亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Time-to-event analysis, also known as survival analysis, aims to predict the time of occurrence of an event, given a set of features. One of the major challenges in this area is dealing with censored data, which can make learning algorithms more complex. Traditional methods such as Cox's proportional hazards model and the accelerated failure time (AFT) model have been popular in this field, but they often require assumptions such as proportional hazards and linearity. In particular, the AFT models often require pre-specified parametric distributional assumptions. To improve predictive performance and alleviate strict assumptions, there have been many deep learning approaches for hazard-based models in recent years. However, representation learning for AFT has not been widely explored in the neural network literature, despite its simplicity and interpretability in comparison to hazard-focused methods. In this work, we introduce the Deep AFT Rank-regression model for Time-to-event prediction (DART). This model uses an objective function based on Gehan's rank statistic, which is efficient and reliable for representation learning. On top of eliminating the requirement to establish a baseline event time distribution, DART retains the advantages of directly predicting event time in standard AFT models. The proposed method is a semiparametric approach to AFT modeling that does not impose any distributional assumptions on the survival time distribution. This also eliminates the need for additional hyperparameters or complex model architectures, unlike existing neural network-based AFT models. Through quantitative analysis on various benchmark datasets, we have shown that DART has significant potential for modeling high-throughput censored time-to-event data.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · 小樣本學習 · state-of-the-art · 講稿 ·
2023 年 9 月 8 日

In intent detection tasks, leveraging meaningful semantic information from intent labels can be particularly beneficial for few-shot scenarios. However, existing few-shot intent detection methods either ignore the intent labels, (e.g. treating intents as indices) or do not fully utilize this information (e.g. only using part of the intent labels). In this work, we present an end-to-end One-to-All system that enables the comparison of an input utterance with all label candidates. The system can then fully utilize label semantics in this way. Experiments on three few-shot intent detection tasks demonstrate that One-to-All is especially effective when the training resource is extremely scarce, achieving state-of-the-art performance in 1-, 3- and 5-shot settings. Moreover, we present a novel pretraining strategy for our model that utilizes indirect supervision from paraphrasing, enabling zero-shot cross-domain generalization on intent detection tasks. Our code is at //github.com/jiangshdd/AllLablesTogether.

We provide a method, based on automata theory, to mechanically prove the correctness of many numeration systems based on Fibonacci numbers. With it, long case-based and induction-based proofs of correctness can be replaced by simply constructing a regular expression (or finite automaton) specifying the rules for valid representations, followed by a short computation. Examples of the systems that can be handled using our technique include Brown's lazy representation (1965), the far-difference representation developed by Alpert (2009), and three representations proposed by Hajnal (2023). We also provide three additional systems and prove their validity.

Robotic manipulation tasks, such as object rearrangement, play a crucial role in enabling robots to interact with complex and arbitrary environments. Existing work focuses primarily on single-level rearrangement planning and, even if multiple levels exist, dependency relations among substructures are geometrically simpler, like tower stacking. We propose Structural Concept Learning (SCL), a deep learning approach that leverages graph attention networks to perform multi-level object rearrangement planning for scenes with structural dependency hierarchies. It is trained on a self-generated simulation data set with intuitive structures, works for unseen scenes with an arbitrary number of objects and higher complexity of structures, infers independent substructures to allow for task parallelization over multiple manipulators, and generalizes to the real world. We compare our method with a range of classical and model-based baselines to show that our method leverages its scene understanding to achieve better performance, flexibility, and efficiency. The dataset, supplementary details, videos, and code implementation are available at: //manavkulshrestha.github.io/scl

Recent neuroimaging studies have highlighted the importance of network-centric brain analysis, particularly with functional magnetic resonance imaging. The emergence of Deep Neural Networks has fostered a substantial interest in predicting clinical outcomes and categorizing individuals based on brain networks. However, the conventional approach involving static brain network analysis offers limited potential in capturing the dynamism of brain function. Although recent studies have attempted to harness dynamic brain networks, their high dimensionality and complexity present substantial challenges. This paper proposes a novel methodology, Dynamic bRAin Transformer (DART), which combines static and dynamic brain networks for more effective and nuanced brain function analysis. Our model uses the static brain network as a baseline, integrating dynamic brain networks to enhance performance against traditional methods. We innovatively employ attention mechanisms, enhancing model explainability and exploiting the dynamic brain network's temporal variations. The proposed approach offers a robust solution to the low signal-to-noise ratio of blood-oxygen-level-dependent signals, a recurring issue in direct DNN modeling. It also provides valuable insights into which brain circuits or dynamic networks contribute more to final predictions. As such, DRAT shows a promising direction in neuroimaging studies, contributing to the comprehensive understanding of brain organization and the role of neural circuits.

The objective of topic inference in research proposals aims to obtain the most suitable disciplinary division from the discipline system defined by a funding agency. The agency will subsequently find appropriate peer review experts from their database based on this division. Automated topic inference can reduce human errors caused by manual topic filling, bridge the knowledge gap between funding agencies and project applicants, and improve system efficiency. Existing methods focus on modeling this as a hierarchical multi-label classification problem, using generative models to iteratively infer the most appropriate topic information. However, these methods overlook the gap in scale between interdisciplinary research proposals and non-interdisciplinary ones, leading to an unjust phenomenon where the automated inference system categorizes interdisciplinary proposals as non-interdisciplinary, causing unfairness during the expert assignment. How can we address this data imbalance issue under a complex discipline system and hence resolve this unfairness? In this paper, we implement a topic label inference system based on a Transformer encoder-decoder architecture. Furthermore, we utilize interpolation techniques to create a series of pseudo-interdisciplinary proposals from non-interdisciplinary ones during training based on non-parametric indicators such as cross-topic probabilities and topic occurrence probabilities. This approach aims to reduce the bias of the system during model training. Finally, we conduct extensive experiments on a real-world dataset to verify the effectiveness of the proposed method. The experimental results demonstrate that our training strategy can significantly mitigate the unfairness generated in the topic inference task.

Modern neural collaborative filtering techniques are critical to the success of e-commerce, social media, and content-sharing platforms. However, despite technical advances -- for every new application domain, we need to train an NCF model from scratch. In contrast, pre-trained vision and language models are routinely applied to diverse applications directly (zero-shot) or with limited fine-tuning. Inspired by the impact of pre-trained models, we explore the possibility of pre-trained recommender models that support building recommender systems in new domains, with minimal or no retraining, without the use of any auxiliary user or item information. Zero-shot recommendation without auxiliary information is challenging because we cannot form associations between users and items across datasets when there are no overlapping users or items. Our fundamental insight is that the statistical characteristics of the user-item interaction matrix are universally available across different domains and datasets. Thus, we use the statistical characteristics of the user-item interaction matrix to identify dataset-independent representations for users and items. We show how to learn universal (i.e., supporting zero-shot adaptation without user or item auxiliary information) representations for nodes and edges from the bipartite user-item interaction graph. We learn representations by exploiting the statistical properties of the interaction data, including user and item marginals, and the size and density distributions of their clusters.

With the rapid development of facial forgery techniques, forgery detection has attracted more and more attention due to security concerns. Existing approaches attempt to use frequency information to mine subtle artifacts under high-quality forged faces. However, the exploitation of frequency information is coarse-grained, and more importantly, their vanilla learning process struggles to extract fine-grained forgery traces. To address this issue, we propose a progressive enhancement learning framework to exploit both the RGB and fine-grained frequency clues. Specifically, we perform a fine-grained decomposition of RGB images to completely decouple the real and fake traces in the frequency space. Subsequently, we propose a progressive enhancement learning framework based on a two-branch network, combined with self-enhancement and mutual-enhancement modules. The self-enhancement module captures the traces in different input spaces based on spatial noise enhancement and channel attention. The Mutual-enhancement module concurrently enhances RGB and frequency features by communicating in the shared spatial dimension. The progressive enhancement process facilitates the learning of discriminative features with fine-grained face forgery clues. Extensive experiments on several datasets show that our method outperforms the state-of-the-art face forgery detection methods.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司