Network alignment is a problem of finding the node mapping between similar networks. It links the data from separate sources and is widely studied in bioinformation and social network fields. The critical difference between network alignment and exact graph matching is that the network alignment considers node mapping in non-isomorphic graphs with error tolerance. Researchers usually utilize AC (accuracy) to measure the performance of network alignments which comparing each output element with the benchmark directly. However, this metric neglects that some nodes are naturally indistinguishable even in single graphs (e.g., nodes have the same neighbors) and no need to distinguish across graphs. Such neglect leads to the underestimation of models. We propose an unbiased metric for network alignment that takes indistinguishable nodes into consideration to address this problem. Our detailed experiments with different scales on both synthetic and real-world datasets demonstrate that the proposed metric correctly reflects the deviation of result mapping from benchmark mapping as standard metric AC does. Comparing with the AC, the proposed metric effectively blocks the effect of indistinguishable nodes and retains stability under increasing indistinguishable nodes.
Few-shot action recognition aims to recognize novel action classes (query) using just a few samples (support). The majority of current approaches follow the metric learning paradigm, which learns to compare the similarity between videos. Recently, it has been observed that directly measuring this similarity is not ideal since different action instances may show distinctive temporal distribution, resulting in severe misalignment issues across query and support videos. In this paper, we arrest this problem from two distinct aspects -- action duration misalignment and action evolution misalignment. We address them sequentially through a Two-stage Action Alignment Network (TA2N). The first stage locates the action by learning a temporal affine transform, which warps each video feature to its action duration while dismissing the action-irrelevant feature (e.g. background). Next, the second stage coordinates query feature to match the spatial-temporal action evolution of support by performing temporally rearrange and spatially offset prediction. Extensive experiments on benchmark datasets show the potential of the proposed method in achieving state-of-the-art performance for few-shot action recognition.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Evaluating the quality of learned representations without relying on a downstream task remains one of the challenges in representation learning. In this work, we present Geometric Component Analysis (GeomCA) algorithm that evaluates representation spaces based on their geometric and topological properties. GeomCA can be applied to representations of any dimension, independently of the model that generated them. We demonstrate its applicability by analyzing representations obtained from a variety of scenarios, such as contrastive learning models, generative models and supervised learning models.
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Pictures of everyday life are inherently multi-label in nature. Hence, multi-label classification is commonly used to analyze their content. In typical multi-label datasets, each picture contains only a few positive labels, and many negative ones. This positive-negative imbalance can result in under-emphasizing gradients from positive labels during training, leading to poor accuracy. In this paper, we introduce a novel asymmetric loss ("ASL"), that operates differently on positive and negative samples. The loss dynamically down-weights the importance of easy negative samples, causing the optimization process to focus more on the positive samples, and also enables to discard mislabeled negative samples. We demonstrate how ASL leads to a more "balanced" network, with increased average probabilities for positive samples, and show how this balanced network is translated to better mAP scores, compared to commonly used losses. Furthermore, we offer a method that can dynamically adjust the level of asymmetry throughout the training. With ASL, we reach new state-of-the-art results on three common multi-label datasets, including achieving 86.6% on MS-COCO. We also demonstrate ASL applicability for other tasks such as fine-grain single-label classification and object detection. ASL is effective, easy to implement, and does not increase the training time or complexity. Implementation is available at: //github.com/Alibaba-MIIL/ASL.
The distance-geometric graph representation adopts a unified scheme (distance) for representing the geometry of three-dimensional(3D) graphs. It is invariant to rotation and translation of the graph and it reflects pair-wise node interactions and their generally local nature. To facilitate the incorporation of geometry in deep learning on 3D graphs, we propose a message-passing graph convolutional network based on the distance-geometric graph representation: DG-GCN (distance-geometric graph convolution network). It utilizes continuous-filter convolutional layers, with filter-generating networks, that enable learning of filter weights from distances, thereby incorporating the geometry of 3D graphs in graph convolutions. Our results for the ESOL and FreeSolv datasets show major improvement over those of standard graph convolutions. They also show significant improvement over those of geometric graph convolutions employing edge weight / edge distance power laws. Our work demonstrates the utility and value of DG-GCN for end-to-end deep learning on 3D graphs, particularly molecular graphs.
Metric learning learns a metric function from training data to calculate the similarity or distance between samples. From the perspective of feature learning, metric learning essentially learns a new feature space by feature transformation (e.g., Mahalanobis distance metric). However, traditional metric learning algorithms are shallow, which just learn one metric space (feature transformation). Can we further learn a better metric space from the learnt metric space? In other words, can we learn metric progressively and nonlinearly like deep learning by just using the existing metric learning algorithms? To this end, we present a hierarchical metric learning scheme and implement an online deep metric learning framework, namely ODML. Specifically, we take one online metric learning algorithm as a metric layer, followed by a nonlinear layer (i.e., ReLU), and then stack these layers modelled after the deep learning. The proposed ODML enjoys some nice properties, indeed can learn metric progressively and performs superiorly on some datasets. Various experiments with different settings have been conducted to verify these properties of the proposed ODML.
Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.
Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.