Neufeld and Wu (arXiv:2310.12545) developed a multilevel Picard (MLP) algorithm which can approximately solve general semilinear parabolic PDEs with gradient-dependent nonlinearities, allowing also for coefficient functions of the corresponding PDE to be non-constant. By introducing a particular stochastic fixed-point equation (SFPE) motivated by the Feynman-Kac representation and the Bismut-Elworthy-Li formula and identifying the first and second component of the unique fixed-point of the SFPE with the unique viscosity solution of the PDE and its gradient, they proved convergence of their algorithm. However, it remained an open question whether the proposed MLP schema in arXiv:2310.12545 does not suffer from the curse of dimensionality. In this paper, we prove that the MLP algorithm in arXiv:2310.12545 indeed can overcome the curse of dimensionality, i.e. that its computational complexity only grows polynomially in the dimension $d\in \mathbb{N}$ and the reciprocal of the accuracy $\varepsilon$, under some suitable assumptions on the nonlinear part of the corresponding PDE.
Faithfully summarizing the knowledge encoded by a deep neural network (DNN) into a few symbolic primitive patterns without losing much information represents a core challenge in explainable AI. To this end, Ren et al. (2023c) have derived a series of theorems to prove that the inference score of a DNN can be explained as a small set of interactions between input variables. However, the lack of generalization power makes it still hard to consider such interactions as faithful primitive patterns encoded by the DNN. Therefore, given different DNNs trained for the same task, we develop a new method to extract interactions that are shared by these DNNs. Experiments show that the extracted interactions can better reflect common knowledge shared by different DNNs.
The Crank-Nicolson (CN) method is a well-known time integrator for evolutionary partial differential equations (PDEs) arising in many real-world applications. Since the solution at any time depends on the solution at previous time steps, the CN method will be inherently difficult to parallelize. In this paper, we consider a parallel method for the solution of evolutionary PDEs with the CN scheme. Using an all-at-once approach, we can solve for all time steps simultaneously using a parallelizable over time preconditioner within a standard iterative method. Due to the diagonalization of the proposed preconditioner, we can prove that most eigenvalues of preconditioned matrices are equal to 1 and the others lie in the set: $\left\{z\in\mathbb{C}: 1/(1 + \alpha) < |z| < 1/(1 - \alpha)~{\rm and}~\Re{e}(z) > 0\right\}$, where $0 < \alpha < 1$ is a free parameter. Meanwhile, the efficient implementation of this proposed preconditioner is described and a mesh-independent convergence rate of the preconditioned GMRES method is derived under certain conditions. Finally, we will verify our theoretical findings via numerical experiments on financial option pricing partial differential equations.
We determine the material parameters in the relaxed micromorphic generalized continuum model for a given periodic microstructure in this work. This is achieved through a least squares fitting of the total energy of the relaxed micromorphic homogeneous continuum to the total energy of the fully-resolved heterogeneous microstructure, governed by classical linear elasticity. The relaxed micromorphic model is a generalized continuum that utilizes the $\Curl$ of a micro-distortion field instead of its full gradient as in the classical micromorphic theory, leading to several advantages and differences. The most crucial advantage is that it operates between two well-defined scales. These scales are determined by linear elasticity with microscopic and macroscopic elasticity tensors, which respectively bound the stiffness of the relaxed micromorphic continuum from above and below. While the macroscopic elasticity tensor is established a priori through standard periodic first-order homogenization, the microscopic elasticity tensor remains to be determined. Additionally, the characteristic length parameter, associated with curvature measurement, controls the transition between the micro- and macro-scales. Both the microscopic elasticity tensor and the characteristic length parameter are here determined using a computational approach based on the least squares fitting of energies. This process involves the consideration of an adequate number of quadratic deformation modes and different specimen sizes. We conduct a comparative analysis between the least square fitting results of the relaxed micromorphic model, the fitting of a skew-symmetric micro-distortion field (Cosserat-micropolar model), and the fitting of the classical micromorphic model with two different formulations for the curvature...
Fourth-order accurate compact schemes for variable coefficient convection diffusion equations are considered. A sufficient condition for the stability of the fully discrete problem is derived using a difference equation based approach. The constant coefficient problems are considered as a special case, and the unconditional stability of compact schemes for such case is proved theoretically. The condition number of the amplification matrix is also analyzed, and an estimate for the same is derived. The examples are provided to support the assumption taken to assure stability.
We present new Neumann-Neumann algorithms based on a time domain decomposition applied to unconstrained parabolic optimal control problems. After a spatial semi-discretization, the Lagrange multiplier approach provides a coupled forward-backward optimality system, which can be solved using a time domain decomposition. Due to the forward-backward structure of the optimality system, nine variants can be found for the Neumann-Neumann algorithms. We analyze their convergence behavior and determine the optimal relaxation parameter for each algorithm. Our analysis reveals that the most natural algorithms are actually only good smoothers, and there are better choices which lead to efficient solvers. We illustrate our analysis with numerical experiments.
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. In this work, we present an extended version of DEC on surface meshes formed by general polygons that bypasses the need for combinatorial subdivision and does not involve any dual mesh. At its core, our approach introduces a new polygonal wedge product that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product rule. Based on the discrete wedge product, we then derive a novel primal-to-primal Hodge star operator. Combining these three `basic operators' we then define new discrete versions of the contraction operator and Lie derivative, codifferential and Laplace operator. We discuss the numerical convergence of each one of these proposed operators and compare them to existing DEC methods. Finally, we show simple applications of our operators on Helmholtz-Hodge decomposition, Laplacian surface fairing, and Lie advection of functions and vector fields on meshes formed by general polygons.
This manuscript examines the problem of nonlinear stochastic fractional neutral integro-differential equations with weakly singular kernels. Our focus is on obtaining precise estimates to cover all possible cases of Abel-type singular kernels. Initially, we establish the existence, uniqueness, and continuous dependence on the initial value of the true solution, assuming a local Lipschitz condition and linear growth condition. Additionally, we develop the Euler-Maruyama method for the numerical solution of the equation and prove its strong convergence under the same conditions as the well-posedness. Moreover, we determine the accurate convergence rate of this method under global Lipschitz conditions and linear growth conditions. And also we have proven generalized Gronwall inequality with a multi-weakly singularity.
A new sparse semiparametric model is proposed, which incorporates the influence of two functional random variables in a scalar response in a flexible and interpretable manner. One of the functional covariates is included through a single-index structure, while the other is included linearly through the high-dimensional vector formed by its discretised observations. For this model, two new algorithms are presented for selecting relevant variables in the linear part and estimating the model. Both procedures utilise the functional origin of linear covariates. Finite sample experiments demonstrated the scope of application of both algorithms: the first method is a fast algorithm that provides a solution (without loss in predictive ability) for the significant computational time required by standard variable selection methods for estimating this model, and the second algorithm completes the set of relevant linear covariates provided by the first, thus improving its predictive efficiency. Some asymptotic results theoretically support both procedures. A real data application demonstrated the applicability of the presented methodology from a predictive perspective in terms of the interpretability of outputs and low computational cost.
In arXiv:2305.03945 [math.NA], a first-order optimization algorithm has been introduced to solve time-implicit schemes of reaction-diffusion equations. In this research, we conduct theoretical studies on this first-order algorithm equipped with a quadratic regularization term. We provide sufficient conditions under which the proposed algorithm and its time-continuous limit converge exponentially fast to a desired time-implicit numerical solution. We show both theoretically and numerically that the convergence rate is independent of the grid size, which makes our method suitable for large-scale problems. The efficiency of our algorithm has been verified via a series of numerical examples conducted on various types of reaction-diffusion equations. The choice of optimal hyperparameters as well as comparisons with some classical root-finding algorithms are also discussed in the numerical section.
We study two numerical approximations of solutions of nonlocal diffusion evolution problems which are inspired in algorithms for computing the bilateral denoising filtering of an image, and which are based on functional rearrangements and on the Fourier transform. Apart from the usual time-space discretization, these algorithms also use the discretization of the range of the solution (quantization). We show that the discrete approximations converge to the continuous solution in suitable functional spaces, and provide error estimates. Finally, we present some numerical experiments illustrating the performance of the algorithms, specially focusing in the execution time.