亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For obtaining optimal first-order convergence guarantee for stochastic optimization, it is necessary to use a recurrent data sampling algorithm that samples every data point with sufficient frequency. Most commonly used data sampling algorithms (e.g., i.i.d., MCMC, random reshuffling) are indeed recurrent under mild assumptions. In this work, we show that for a particular class of stochastic optimization algorithms, we do not need any other property (e.g., independence, exponential mixing, and reshuffling) than recurrence in data sampling algorithms to guarantee the optimal rate of first-order convergence. Namely, using regularized versions of Minimization by Incremental Surrogate Optimization (MISO), we show that for non-convex and possibly non-smooth objective functions, the expected optimality gap converges at an optimal rate $O(n^{-1/2})$ under general recurrent sampling schemes. Furthermore, the implied constant depends explicitly on the `speed of recurrence', measured by the expected amount of time to visit a given data point either averaged (`target time') or supremized (`hitting time') over the current location. We demonstrate theoretically and empirically that convergence can be accelerated by selecting sampling algorithms that cover the data set most effectively. We discuss applications of our general framework to decentralized optimization and distributed non-negative matrix factorization.

相關內容

We propose an algorithm which predicts each subsequent time step relative to the previous timestep of intractable short rate model (when adjusted for drift and overall distribution of previous percentile result) and show that the method achieves superior outcomes to the unbiased estimate both on the trained dataset and different validation data.

The solution to a stochastic optimal control problem can be determined by computing the value function from a discretization of the associated Hamilton-Jacobi-Bellman equation. Alternatively, the problem can be reformulated in terms of a pair of forward-backward SDEs, which makes Monte-Carlo techniques applicable. More recently, the problem has also been viewed from the perspective of forward and reverse time SDEs and their associated Fokker-Planck equations. This approach is closely related to techniques used in diffusion-based generative models. Forward and reverse time formulations express the value function as the ratio of two probability density functions; one stemming from a forward McKean-Vlasov SDE and another one from a reverse McKean-Vlasov SDE. In this paper, we extend this approach to a more general class of stochastic optimal control problems and combine it with ensemble Kalman filter type and diffusion map approximation techniques in order to obtain efficient and robust particle-based algorithms.

With advances in scientific computing and mathematical modeling, complex scientific phenomena such as galaxy formations and rocket propulsion can now be reliably simulated. Such simulations can however be very time-intensive, requiring millions of CPU hours to perform. One solution is multi-fidelity emulation, which uses data of different fidelities to train an efficient predictive model which emulates the expensive simulator. For complex scientific problems and with careful elicitation from scientists, such multi-fidelity data may often be linked by a directed acyclic graph (DAG) representing its scientific model dependencies. We thus propose a new Graphical Multi-fidelity Gaussian Process (GMGP) model, which embeds this DAG structure (capturing scientific dependencies) within a Gaussian process framework. We show that the GMGP has desirable modeling traits via two Markov properties, and admits a scalable algorithm for recursive computation of the posterior mean and variance along at each depth level of the DAG. We also present a novel experimental design methodology over the DAG given an experimental budget, and propose a nonlinear extension of the GMGP via deep Gaussian processes. The advantages of the GMGP are then demonstrated via a suite of numerical experiments and an application to emulation of heavy-ion collisions, which can be used to study the conditions of matter in the Universe shortly after the Big Bang. The proposed model has broader uses in data fusion applications with graphical structure, which we further discuss.

We present a method to increase the resolution of measurements of a physical system and subsequently predict its time evolution using thermodynamics-aware neural networks. Our method uses adversarial autoencoders, which reduce the dimensionality of the full order model to a set of latent variables that are enforced to match a prior, for example a normal distribution. Adversarial autoencoders are seen as generative models, and they can be trained to generate high-resolution samples from low-resoution inputs, meaning they can address the so-called super-resolution problem. Then, a second neural network is trained to learn the physical structure of the latent variables and predict their temporal evolution. This neural network is known as an structure-preserving neural network. It learns the metriplectic-structure of the system and applies a physical bias to ensure that the first and second principles of thermodynamics are fulfilled. The integrated trajectories are decoded to their original dimensionality, as well as to the higher dimensionality space produced by the adversarial autoencoder and they are compared to the ground truth solution. The method is tested with two examples of flow over a cylinder, where the fluid properties are varied between both examples.

Motivated by optimization with differential equations, we consider optimization problems with Hilbert spaces as decision spaces. As a consequence of their infinite dimensionality, the numerical solution necessitates finite dimensional approximations and discretizations. We develop an approximation framework and demonstrate criticality measure-based error estimates. We consider criticality measures inspired by those used within optimization methods, such as semismooth Newton and (conditional) gradient methods. Furthermore, we show that our error estimates are order-optimal. Our findings augment existing distance-based error estimates, but do not rely on strong convexity or second-order sufficient optimality conditions. Moreover, our error estimates can be used for code verification and validation. We illustrate our theoretical convergence rates on linear, semilinear, and bilinear PDE-constrained optimization.

Regular resolution is a refinement of the resolution proof system requiring that no variable be resolved on more than once along any path in the proof. It is known that there exist sequences of formulas that require exponential-size proofs in regular resolution while admitting polynomial-size proofs in resolution. Thus, with respect to the usual notion of simulation, regular resolution is separated from resolution. An alternative, and weaker, notion for comparing proof systems is that of an "effective simulation," which allows the translation of the formula along with the proof when moving between proof systems. We prove that regular resolution is equivalent to resolution under effective simulations. As a corollary, we recover in a black-box fashion a recent result on the hardness of automating regular resolution.

The ability to extract material parameters of perovskite from quantitative experimental analysis is essential for rational design of photovoltaic and optoelectronic applications. However, the difficulty of this analysis increases significantly with the complexity of the theoretical model and the number of material parameters for perovskite. Here we use Gaussian process to develop an analysis platform that can extract up to 8 fundamental material parameters of an organometallic perovskite semiconductor from a transient photoluminescence experiment, based on a complex full physics model that includes drift-diffusion of carriers and dynamic defect occupation. An example study of thermal degradation reveals that changes in doping concentration and carrier mobility dominate, while the defect energy level remains nearly unchanged. This platform can be conveniently applied to other experiments or to combinations of experiments, accelerating materials discovery and optimization of semiconductor materials for photovoltaics and other applications.

Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and randomized Nystr\"om approximation, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.

Validation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers. Based on a multi-stage Delphi process conducted by a multidisciplinary expert consortium as well as extensive community feedback, the present work provides the first reliable and comprehensive common point of access to information on pitfalls related to validation metrics in image analysis. Focusing on biomedical image analysis but with the potential of transfer to other fields, the addressed pitfalls generalize across application domains and are categorized according to a newly created, domain-agnostic taxonomy. To facilitate comprehension, illustrations and specific examples accompany each pitfall. As a structured body of information accessible to researchers of all levels of expertise, this work enhances global comprehension of a key topic in image analysis validation.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司