With the shrinking of technology nodes and the use of parallel processor clusters in hostile and critical environments, such as space, run-time faults caused by radiation are a serious cross-cutting concern, also impacting architectural design. This paper introduces an architectural approach to run-time configurable soft-error tolerance at the core level, augmenting a six-core open-source RISC-V cluster with a novel On-Demand Redundancy Grouping (ODRG) scheme. ODRG allows the cluster to operate either as two fault-tolerant cores, or six individual cores for high-performance, with limited overhead to switch between these modes during run-time. The ODRG unit adds less than 11% of a core's area for a three-core group, or a total of 1% of the cluster area, and shows negligible timing increase, which compares favorably to a commercial state-of-the-art implementation, and is 2.5$\times$ faster in fault recovery re-synchronization. Furthermore, when redundancy is not necessary, the ODRG approach allows the redundant cores to be used for independent computation, allowing up to 2.96$\times$ increase in performance for selected applications.
Aiming to train and deploy predictive models, organizations collect large amounts of detailed client data, risking the exposure of private information in the event of a breach. To mitigate this, policymakers increasingly demand compliance with the data minimization (DM) principle, restricting data collection to only that data which is relevant and necessary for the task. Despite regulatory pressure, the problem of deploying machine learning models that obey DM has so far received little attention. In this work, we address this challenge in a comprehensive manner. We propose a novel vertical DM (vDM) workflow based on data generalization, which by design ensures that no full-resolution client data is collected during training and deployment of models, benefiting client privacy by reducing the attack surface in case of a breach. We formalize and study the corresponding problem of finding generalizations that both maximize data utility and minimize empirical privacy risk, which we quantify by introducing a diverse set of policy-aligned adversarial scenarios. Finally, we propose a range of baseline vDM algorithms, as well as Privacy-aware Tree (PAT), an especially effective vDM algorithm that outperforms all baselines across several settings. We plan to release our code as a publicly available library, helping advance the standardization of DM for machine learning. Overall, we believe our work can help lay the foundation for further exploration and adoption of DM principles in real-world applications.
This study presents an ensemble approach that addresses the challenges of identification and analysis of research articles in rapidly evolving fields, using the field of Artificial Intelligence (AI) as a case study. Our approach included using decision tree, sciBERT and regular expression matching on different fields of the articles, and a SVM to merge the results from different models. We evaluated the effectiveness of our method on a manually labeled dataset, finding that our combined approach captured around 97% of AI-related articles in the web of science (WoS) corpus with a precision of 0.92. This presents a 0.15 increase in F1 score compared with existing search term based approach. Following this, we analyzed the publication volume trends and common research themes.We found that compared with existing methods, our ensemble approach revealed an increased degree of interdisciplinarity, and was able to identify more articles in certain subfields like feature extraction and optimization. This study demonstrates the potential of our approach as a tool for the accurate identification of scholarly articles, which is also capable of providing insights into the volume and content of a research area.
Reducing the environmental footprint of electronics and computing devices requires new tools that empower designers to make informed decisions about sustainability during the design process itself. This is not possible with current tools for life cycle assessment (LCA) which require substantial domain expertise and time to evaluate the numerous chips and other components that make up a device. We observe first that informed decision-making does not require absolute metrics and can instead be done by comparing designs. Second, we can use domain-specific heuristics to perform these comparisons. We combine these insights to develop DeltaLCA, an open-source interactive design tool that addresses the dual challenges of automating life cycle inventory generation and data availability by performing comparative analyses of electronics designs. Users can upload standard design files from Electronic Design Automation (EDA) software and the tool will guide them through determining which one has greater carbon footprint. DeltaLCA leverages electronics-specific LCA datasets and heuristics and tries to automatically rank the two designs, prompting users to provide additional information only when necessary. We show through case studies DeltaLCA achieves the same result as evaluating full LCAs, and that it accelerates LCA comparisons from eight expert-hours to a single click for devices with ~30 components, and 15 minutes for more complex devices with ~100 components.
State estimation is a crucial component for the successful implementation of robotic systems, relying on sensors such as cameras, LiDAR, and IMUs. However, in real-world scenarios, the performance of these sensors is degraded by challenging environments, e.g. adverse weather conditions and low-light scenarios. The emerging 4D imaging radar technology is capable of providing robust perception in adverse conditions. Despite its potential, challenges remain for indoor settings where noisy radar data does not present clear geometric features. Moreover, disparities in radar data resolution and field of view (FOV) can lead to inaccurate measurements. While prior research has explored radar-inertial odometry based on Doppler velocity information, challenges remain for the estimation of 3D motion because of the discrepancy in the FOV and resolution of the radar sensor. In this paper, we address Doppler velocity measurement uncertainties. We present a method to optimize body frame velocity while managing Doppler velocity uncertainty. Based on our observations, we propose a dual imaging radar configuration to mitigate the challenge of discrepancy in radar data. To attain high-precision 3D state estimation, we introduce a strategy that seamlessly integrates radar data with a consumer-grade IMU sensor using fixed-lag smoothing optimization. Finally, we evaluate our approach using real-world 3D motion data.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.
To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.