This paper explores the potential of Large Language Models(LLMs) in zero-shot anomaly detection for safe visual navigation. With the assistance of the state-of-the-art real-time open-world object detection model Yolo-World and specialized prompts, the proposed framework can identify anomalies within camera-captured frames that include any possible obstacles, then generate concise, audio-delivered descriptions emphasizing abnormalities, assist in safe visual navigation in complex circumstances. Moreover, our proposed framework leverages the advantages of LLMs and the open-vocabulary object detection model to achieve the dynamic scenario switch, which allows users to transition smoothly from scene to scene, which addresses the limitation of traditional visual navigation. Furthermore, this paper explored the performance contribution of different prompt components, provided the vision for future improvement in visual accessibility, and paved the way for LLMs in video anomaly detection and vision-language understanding.
Large-scale Text-to-Image (T2I) diffusion models demonstrate significant generation capabilities based on textual prompts. Based on the T2I diffusion models, text-guided image editing research aims to empower users to manipulate generated images by altering the text prompts. However, existing image editing techniques are prone to editing over unintentional regions that are beyond the intended target area, primarily due to inaccuracies in cross-attention maps. To address this problem, we propose Localization-aware Inversion (LocInv), which exploits segmentation maps or bounding boxes as extra localization priors to refine the cross-attention maps in the denoising phases of the diffusion process. Through the dynamic updating of tokens corresponding to noun words in the textual input, we are compelling the cross-attention maps to closely align with the correct noun and adjective words in the text prompt. Based on this technique, we achieve fine-grained image editing over particular objects while preventing undesired changes to other regions. Our method LocInv, based on the publicly available Stable Diffusion, is extensively evaluated on a subset of the COCO dataset, and consistently obtains superior results both quantitatively and qualitatively.The code will be released at //github.com/wangkai930418/DPL
Due to the growing complexity of modern Integrated Circuits (ICs), there is a need for automated circuit design methods. Recent years have seen rising research in hardware design language generation to facilitate the design process. In this work, we propose a Verilog generation framework, BetterV, which fine-tunes the large language models (LLMs) on processed domain-specific datasets and incorporates generative discriminators for guidance on particular design demands. The Verilog modules are collected, filtered and processed from internet to form a clean and abundant dataset. Instruct-tuning methods are specially designed to fine-tune the LLMs to understand the knowledge about Verilog. Furthermore, data are augmented to enrich the training set and also used to train a generative discriminator on particular downstream task, which leads a guidance for the LLMs to optimize the Verilog implementation. BetterV has the ability to generate syntactically and functionally correct Verilog, which can outperform GPT-4 on the VerilogEval benchmark. With the help of task-specific generative discriminator, BetterV can achieve remarkable improvement on various electronic design automation (EDA) downstream tasks, including the netlist node reduction for synthesis and verification runtime reduction with Boolean Satisfiability (SAT) solving.
This paper proposes a method to identify a Koopman model of a feedback-controlled system given a known controller. The Koopman operator allows a nonlinear system to be rewritten as an infinite-dimensional linear system by viewing it in terms of an infinite set of lifting functions. A finite-dimensional approximation of the Koopman operator can be identified from data by choosing a finite subset of lifting functions and solving a regression problem in the lifted space. Existing methods are designed to identify open-loop systems. However, it is impractical or impossible to run experiments on some systems, such as unstable systems, in an open-loop fashion. The proposed method leverages the linearity of the Koopman operator, along with knowledge of the controller and the structure of the closed-loop system, to simultaneously identify the closed-loop and plant systems. The advantages of the proposed closed-loop Koopman operator approximation method are demonstrated in simulation using a Duffing oscillator and experimentally using a rotary inverted pendulum system. An open-source software implementation of the proposed method is publicly available, along with the experimental dataset generated for this paper.
Fully Homomorphic Encryption (FHE) enables privacy-preserving computation and has many applications. However, its practical implementation faces massive computation and memory overheads. To address this bottleneck, several Application-Specific Integrated Circuit (ASIC) FHE accelerators have been proposed. All these prior works put every component needed for FHE onto one chip (monolithic), hence offering high performance. However, they suffer from practical problems associated with large-scale chip design, such as inflexibility, low yield, and high manufacturing cost. In this paper, we present the first-of-its-kind multi-chiplet-based FHE accelerator `REED' for overcoming the limitations of prior monolithic designs. To utilize the advantages of multi-chiplet structures while matching the performance of larger monolithic systems, we propose and implement several novel strategies in the context of FHE. These include a scalable chiplet design approach, an effective framework for workload distribution, a custom inter-chiplet communication strategy, and advanced pipelined Number Theoretic Transform and automorphism design to enhance performance. Experimental results demonstrate that REED 2.5D microprocessor consumes 96.7 mm$^2$ chip area, 49.4 W average power in 7nm technology. It could achieve a remarkable speedup of up to 2,991x compared to a CPU (24-core 2xIntel X5690) and offer 1.9x better performance, along with a 50% reduction in development costs when compared to state-of-the-art ASIC FHE accelerators. Furthermore, our work presents the first instance of benchmarking an encrypted deep neural network (DNN) training. Overall, the REED architecture design offers a highly effective solution for accelerating FHE, thereby significantly advancing the practicality and deployability of FHE in real-world applications.
This study introduces the Quantum Federated Neural Network for Financial Fraud Detection (QFNN-FFD), a cutting-edge framework merging Quantum Machine Learning (QML) and quantum computing with Federated Learning (FL) for financial fraud detection. Using quantum technologies' computational power and the robust data privacy protections offered by FL, QFNN-FFD emerges as a secure and efficient method for identifying fraudulent transactions within the financial sector. Implementing a dual-phase training model across distributed clients enhances data integrity and enables superior performance metrics, achieving precision rates consistently above 95%. Additionally, QFNN-FFD demonstrates exceptional resilience by maintaining an impressive 80% accuracy, highlighting its robustness and readiness for real-world applications. This combination of high performance, security, and robustness against noise positions QFNN-FFD as a transformative advancement in financial technology solutions and establishes it as a new benchmark for privacy-focused fraud detection systems. This framework facilitates the broader adoption of secure, quantum-enhanced financial services and inspires future innovations that could use QML to tackle complex challenges in other areas requiring high confidentiality and accuracy.
We present a novel model-driven approach for testing RESTful applications. We introduce a (i) domain-specific language for OpenAPI specifications and (ii) a tool to support our methodology. Our DSL is inspired by session types and enables the modelling of communication protocols between a REST client and server. Our tool, dubbed COTS, generates (randomised) model-based test executions and reports software defects. We evaluate the effectiveness of our approach by applying it to test several open source applications. Our findings indicate that our methodology can identify nuanced defects in REST APIs and achieve comparable or superior code coverage when compared to much larger handcrafted test suites.
In this work, we present X-Diffusion, a cross-sectional diffusion model tailored for Magnetic Resonance Imaging (MRI) data. X-Diffusion is capable of generating the entire MRI volume from just a single MRI slice or optionally from few multiple slices, setting new benchmarks in the precision of synthesized MRIs from extremely sparse observations. The uniqueness lies in the novel view-conditional training and inference of X-Diffusion on MRI volumes, allowing for generalized MRI learning. Our evaluations span both brain tumour MRIs from the BRATS dataset and full-body MRIs from the UK Biobank dataset. Utilizing the paired pre-registered Dual-energy X-ray Absorptiometry (DXA) and MRI modalities in the UK Biobank dataset, X-Diffusion is able to generate detailed 3D MRI volume from a single full-body DXA. Remarkably, the resultant MRIs not only stand out in precision on unseen examples (surpassing state-of-the-art results by large margins) but also flawlessly retain essential features of the original MRI, including tumour profiles, spine curvature, brain volume, and beyond. Furthermore, the trained X-Diffusion model on the MRI datasets attains a generalization capacity out-of-domain (e.g. generating knee MRIs even though it is trained on brains). The code is available on the project website //emmanuelleb985.github.io/XDiffusion/ .
Adapting Large Language Models (LLMs) to new tasks through fine-tuning has been made more efficient by the introduction of Parameter-Efficient Fine-Tuning (PEFT) techniques, such as LoRA. However, these methods often underperform compared to full fine-tuning, particularly in scenarios involving complex datasets. This issue becomes even more pronounced in complex domains, highlighting the need for improved PEFT approaches that can achieve better performance. Through a series of experiments, we have uncovered two critical insights that shed light on the training and parameter inefficiency of LoRA. Building on these insights, we have developed HydraLoRA, a LoRA framework with an asymmetric structure that eliminates the need for domain expertise. Our experiments demonstrate that HydraLoRA outperforms other PEFT approaches, even those that rely on domain knowledge during the training and inference phases. \href{//github.com/Clin0212/HydraLoRA}{Code}.
This paper explores the application of Swarm-Structured Multi-Agent Systems (MAS) to establish medical necessity, a process that involves a systematic review of patient-specific medical structured and unstructured data against clinical guidelines. We addressed this complex task by decomposing it into smaller, more manageable sub-tasks. Each sub-task is handled by a specialized AI agent. We conduct a systematic study of the impact of various prompting strategies on these agents and benchmark different Large Language Models (LLMs) to determine their accuracy in completing these tasks. Additionally, we investigate how these agents can provide explainability, thereby enhancing trust and transparency within the system.
Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.