亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decoding of seen visual contents with non-invasive brain recordings has important scientific and practical values. Efforts have been made to recover the seen images from brain signals. However, most existing approaches cannot faithfully reflect the visual contents due to insufficient image quality or semantic mismatches. Compared with reconstructing pixel-level visual images, speaking is a more efficient and effective way to explain visual information. Here we introduce a non-invasive neural decoder, termed as MindGPT, which interprets perceived visual stimuli into natural languages from fMRI signals. Specifically, our model builds upon a visually guided neural encoder with a cross-attention mechanism, which permits us to guide latent neural representations towards a desired language semantic direction in an end-to-end manner by the collaborative use of the large language model GPT. By doing so, we found that the neural representations of the MindGPT are explainable, which can be used to evaluate the contributions of visual properties to language semantics. Our experiments show that the generated word sequences truthfully represented the visual information (with essential details) conveyed in the seen stimuli. The results also suggested that with respect to language decoding tasks, the higher visual cortex (HVC) is more semantically informative than the lower visual cortex (LVC), and using only the HVC can recover most of the semantic information. The code of the MindGPT model will be publicly available at //github.com/JxuanC/MindGPT.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · 變換 · 可約的 · CC ·
2023 年 11 月 10 日

Neural image compression methods have seen increasingly strong performance in recent years. However, they suffer orders of magnitude higher computational complexity compared to traditional codecs, which hinders their real-world deployment. This paper takes a step forward towards closing this gap in decoding complexity by using a shallow or even linear decoding transform resembling that of JPEG. To compensate for the resulting drop in compression performance, we exploit the often asymmetrical computation budget between encoding and decoding, by adopting more powerful encoder networks and iterative encoding. We theoretically formalize the intuition behind, and our experimental results establish a new frontier in the trade-off between rate-distortion and decoding complexity for neural image compression. Specifically, we achieve rate-distortion performance competitive with the established mean-scale hyperprior architecture of Minnen et al. (2018) at less than 50K decoding FLOPs/pixel, reducing the baseline's overall decoding complexity by 80%, or over 90% for the synthesis transform alone. Our code can be found at //github.com/mandt-lab/shallow-ntc.

Recent advances such as LLaVA and Mini-GPT4 have successfully integrated visual information into LLMs, yielding inspiring outcomes and giving rise to a new generation of multi-modal LLMs, or MLLMs. Nevertheless, these methods struggle with hallucinations and the mutual interference between tasks. To tackle these problems, we propose an efficient and accurate approach to adapt to downstream tasks by utilizing LLM as a bridge to connect multiple expert models, namely u-LLaVA. Firstly, we incorporate the modality alignment module and multi-task modules into LLM. Then, we reorganize or rebuild multi-type public datasets to enable efficient modality alignment and instruction following. Finally, task-specific information is extracted from the trained LLM and provided to different modules for solving downstream tasks. The overall framework is simple, effective, and achieves state-of-the-art performance across multiple benchmarks. We also release our model, the generated data, and the code base publicly available.

Large Language Models (LLMs) with a billion or more parameters are prime targets for network pruning, which aims to reduce a portion of the network weights without compromising performance. Prior approaches such as Weights Magnitude, SparseGPT, and Wanda, either concentrated solely on weights or integrated weights with activations for sparsity. However, they overlooked the informative gradients derived from pretrained large language models. In this paper, we present a novel sparsity-centric pruning method for pretrained LLMs, termed Gradient-based Language Model Pruner (GBLM-Pruner). GBLM-Pruner leverages the first-order term of the Taylor expansion, operating in a training-free manner by harnessing properly normalized gradients from a few calibration samples to determine the importance pruning score, and substantially outperforms competitive counterparts like SparseGPT and Wanda in multiple benchmarks. Intriguing, after incorporating gradients, the unstructured pruning method tends to reveal some structural patterns post-pruning, which mirrors the geometric interdependence inherent in the LLMs' parameter structure. Additionally, GBLM-Pruner functions without any subsequent retraining or weight updates to maintain its simplicity as other counterparts. Extensive evaluations on LLaMA-1 and LLaMA-2 across various language benchmarks and perplexity show that GBLM-Pruner surpasses magnitude pruning, Wanda (weights+activations) and SparseGPT (weights+activations+weight update) by significant margins. Our code and models are available at //github.com/RocktimJyotiDas/GBLM-Pruner.

In recent years, audio-driven 3D facial animation has gained significant attention, particularly in applications such as virtual reality, gaming, and video conferencing. However, accurately modeling the intricate and subtle dynamics of facial expressions remains a challenge. Most existing studies approach the facial animation task as a single regression problem, which often fail to capture the intrinsic inter-modal relationship between speech signals and 3D facial animation and overlook their inherent consistency. Moreover, due to the limited availability of 3D-audio-visual datasets, approaches learning with small-size samples have poor generalizability that decreases the performance. To address these issues, in this study, we propose a cross-modal dual-learning framework, termed DualTalker, aiming at improving data usage efficiency as well as relating cross-modal dependencies. The framework is trained jointly with the primary task (audio-driven facial animation) and its dual task (lip reading) and shares common audio/motion encoder components. Our joint training framework facilitates more efficient data usage by leveraging information from both tasks and explicitly capitalizing on the complementary relationship between facial motion and audio to improve performance. Furthermore, we introduce an auxiliary cross-modal consistency loss to mitigate the potential over-smoothing underlying the cross-modal complementary representations, enhancing the mapping of subtle facial expression dynamics. Through extensive experiments and a perceptual user study conducted on the VOCA and BIWI datasets, we demonstrate that our approach outperforms current state-of-the-art methods both qualitatively and quantitatively. We have made our code and video demonstrations available at //github.com/sabrina-su/iadf.git.

Recently, open-domain text-to-video (T2V) generation models have made remarkable progress. However, the promising results are mainly shown by the qualitative cases of generated videos, while the quantitative evaluation of T2V models still faces two critical problems. Firstly, existing studies lack fine-grained evaluation of T2V models on different categories of text prompts. Although some benchmarks have categorized the prompts, their categorization either only focuses on a single aspect or fails to consider the temporal information in video generation. Secondly, it is unclear whether the automatic evaluation metrics are consistent with human standards. To address these problems, we propose FETV, a benchmark for Fine-grained Evaluation of Text-to-Video generation. FETV is multi-aspect, categorizing the prompts based on three orthogonal aspects: the major content, the attributes to control and the prompt complexity. FETV is also temporal-aware, which introduces several temporal categories tailored for video generation. Based on FETV, we conduct comprehensive manual evaluations of four representative T2V models, revealing their pros and cons on different categories of prompts from different aspects. We also extend FETV as a testbed to evaluate the reliability of automatic T2V metrics. The multi-aspect categorization of FETV enables fine-grained analysis of the metrics' reliability in different scenarios. We find that existing automatic metrics (e.g., CLIPScore and FVD) correlate poorly with human evaluation. To address this problem, we explore several solutions to improve CLIPScore and FVD, and develop two automatic metrics that exhibit significant higher correlation with humans than existing metrics. Benchmark page: //github.com/llyx97/FETV.

Advances in ML have motivated the design of video analytics systems that allow for structured queries over video datasets. However, existing systems limit query expressivity, require users to specify an ML model per predicate, rely on complex optimizations that trade off accuracy for performance, and return large amounts of redundant and low-quality results. This paper focuses on the recently developed Vision-Language Models (VLMs) that allow users to query images using natural language like "cars during daytime at traffic intersections." Through an in-depth analysis, we show VLMs address three limitations of current video analytics systems: general expressivity, a single general purpose model to query many predicates, and are both simple and fast. However, VLMs still return large numbers of redundant and low-quality results that can overwhelm and burden users. In addition, VLMs often require manual prompt engineering to improve result relevance. We present Zelda: a video analytics system that uses VLMs to return both relevant and semantically diverse results for top-K queries on large video datasets. Zelda prompts the VLM with the user's query in natural language. Zelda then automatically adds discriminator and synonym terms to boost accuracy, and terms to identify low-quality frames. To improve result diversity, Zelda uses semantic-rich VLM embeddings in an algorithm that prunes similar frames while considering their relevance to the query and the number of top-K results requested. We evaluate Zelda across five datasets and 19 queries and quantitatively show it achieves higher mean average precision (up to 1.15x) and improves average pairwise similarity (up to 1.16x) compared to using VLMs out-of-the-box. We also compare Zelda to a state-of-the-art video analytics engine and show that Zelda retrieves results 7.5x (up to 10.4x) faster for the same accuracy and frame diversity.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Transformer is a promising neural network learner, and has achieved great success in various machine learning tasks. Thanks to the recent prevalence of multimodal applications and big data, Transformer-based multimodal learning has become a hot topic in AI research. This paper presents a comprehensive survey of Transformer techniques oriented at multimodal data. The main contents of this survey include: (1) a background of multimodal learning, Transformer ecosystem, and the multimodal big data era, (2) a theoretical review of Vanilla Transformer, Vision Transformer, and multimodal Transformers, from a geometrically topological perspective, (3) a review of multimodal Transformer applications, via two important paradigms, i.e., for multimodal pretraining and for specific multimodal tasks, (4) a summary of the common challenges and designs shared by the multimodal Transformer models and applications, and (5) a discussion of open problems and potential research directions for the community.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

北京阿比特科技有限公司