亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Lexical-syntactic flexibility, in the form of conversion (or zero-derivation) is a hallmark of English morphology. In conversion, a word with one part of speech is placed in a non-prototypical context, where it is coerced to behave as if it had a different part of speech. However, while this process affects a large part of the English lexicon, little work has been done to establish the degree to which language models capture this type of generalization. This paper reports the first study on the behavior of large language models with reference to conversion. We design a task for testing lexical-syntactic flexibility -- the degree to which models can generalize over words in a construction with a non-prototypical part of speech. This task is situated within a natural language inference paradigm. We test the abilities of five language models -- two proprietary models (GPT-3.5 and GPT-4), three open-source models (Mistral 7B, Falcon 40B, and Llama 2 70B). We find that GPT-4 performs best on the task, followed by GPT-3.5, but that the open source language models are also able to perform it and that the 7B parameter Mistral displays as little difference between its baseline performance on the natural language inference task and the non-prototypical syntactic category task, as the massive GPT-4.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · · Performer · 線性的 · MINE ·
2024 年 5 月 8 日

We formally introduce a systematic (de/re)-composition approach, based on the algebraic formalism of "Multi-Dimensional Homomorphisms (MDHs)". Our approach is designed as general enough to be applicable to a wide range of data-parallel computations and for various kinds of target parallel architectures. To efficiently target the deep and complex memory and core hierarchies of contemporary architectures, we exploit our introduced (de/re)-composition approach for a correct-by-construction, parametrized cache blocking and parallelization strategy. We show that our approach is powerful enough to express, in the same formalism, the (de/re)-composition strategies of different classes of state-of-the-art approaches (scheduling-based, polyhedral, etc), and we demonstrate that the parameters of our strategies enable systematically generating code that can be fully automatically optimized (auto-tuned) for the particular target architecture and characteristics of the input and output data (e.g., their sizes and memory layouts). Particularly, our experiments confirm that via auto-tuning, we achieve higher performance than state-of-the-art approaches, including hand-optimized solutions provided by vendors (such as NVIDIA cuBLAS/cuDNN and Intel oneMKL/oneDNN), on real-world data sets and for a variety of data-parallel computations, including: linear algebra routines, stencil and quantum chemistry computations, data mining algorithms, and computations that recently gained high attention due to their relevance for deep learning.

Deep learning-based Autonomous Driving (AD) models often exhibit poor generalization due to data heterogeneity in an ever domain-shifting environment. While Federated Learning (FL) could improve the generalization of an AD model (known as FedAD system), conventional models often struggle with under-fitting as the amount of accumulated training data progressively increases. To address this issue, instead of conventional small models, employing Large Vision Models (LVMs) in FedAD is a viable option for better learning of representations from a vast volume of data. However, implementing LVMs in FedAD introduces three challenges: (I) the extremely high communication overheads associated with transmitting LVMs between participating vehicles and a central server; (II) lack of computing resource to deploy LVMs on each vehicle; (III) the performance drop due to LVM focusing on shared features but overlooking local vehicle characteristics. To overcome these challenges, we propose pFedLVM, a LVM-Driven, Latent Feature-Based Personalized Federated Learning framework. In this approach, the LVM is deployed only on central server, which effectively alleviates the computational burden on individual vehicles. Furthermore, the exchange between central server and vehicles are the learned features rather than the LVM parameters, which significantly reduces communication overhead. In addition, we utilize both shared features from all participating vehicles and individual characteristics from each vehicle to establish a personalized learning mechanism. This enables each vehicle's model to learn features from others while preserving its personalized characteristics, thereby outperforming globally shared models trained in general FL. Extensive experiments demonstrate that pFedLVM outperforms the existing state-of-the-art approaches.

We propose the on-the-fly ensembling of a machine translation model with an LLM, prompted on the same task and input. We perform experiments on 4 language pairs (both directions) with varying data amounts. We find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and ensembling with an LLM can produce better translations than ensembling two stronger MT models. We combine our method with various techniques from LLM prompting, such as in context learning and translation context.

Training on large amounts of rationales (i.e., CoT Fine-tuning) is effective at improving the reasoning capabilities of large language models (LLMs). However, acquiring human-authored rationales or augmenting rationales from proprietary models is costly and not scalable. In this paper, we study the problem of whether LLMs could self-improve their reasoning capabilities. To this end, we propose Self-Explore, where the LLM is tasked to explore the first wrong step (i.e., the first pit) within the rationale and use such signals as fine-grained rewards for further improvement. On the GSM8K and MATH test set, Self-Explore achieves 11.57% and 2.89% improvement on average across three LLMs compared to supervised fine-tuning (SFT). Our code is available at //github.com/hbin0701/Self-Explore.

Graph Transformers (GTs) have significantly advanced the field of graph representation learning by overcoming the limitations of message-passing graph neural networks (GNNs) and demonstrating promising performance and expressive power. However, the quadratic complexity of self-attention mechanism in GTs has limited their scalability, and previous approaches to address this issue often suffer from expressiveness degradation or lack of versatility. To address this issue, we propose AnchorGT, a novel attention architecture for GTs with global receptive field and almost linear complexity, which serves as a flexible building block to improve the scalability of a wide range of GT models. Inspired by anchor-based GNNs, we employ structurally important $k$-dominating node set as anchors and design an attention mechanism that focuses on the relationship between individual nodes and anchors, while retaining the global receptive field for all nodes. With its intuitive design, AnchorGT can easily replace the attention module in various GT models with different network architectures and structural encodings, resulting in reduced computational overhead without sacrificing performance. In addition, we theoretically prove that AnchorGT attention can be strictly more expressive than Weisfeiler-Lehman test, showing its superiority in representing graph structures. Our experiments on three state-of-the-art GT models demonstrate that their AnchorGT variants can achieve better results while being faster and significantly more memory efficient.

Background:Technical systems are growing in complexity with more components and functions across various disciplines. Model-Driven Engineering (MDE) helps manage this complexity by using models as key artifacts. Domain-Specific Languages (DSL) supported by MDE facilitate modeling. As data generation in product development increases, there's a growing demand for AI algorithms, which can be challenging to implement. Integrating AI algorithms with DSL and MDE can streamline this process. Objective:This study aims to investigate the existing model-driven approaches relying on DSL in support of the engineering of AI software systems to sharpen future research further and define the current state of the art. Method:We conducted a Systemic Literature Review (SLR), collecting papers from five major databases resulting in 1335 candidate studies, eventually retaining 18 primary studies. Each primary study will be evaluated and discussed with respect to the adoption of MDE principles and practices and the phases of AI development support aligned with the stages of the CRISP-DM methodology. Results:The study's findings show that language workbenches are of paramount importance in dealing with all aspects of modeling language development and are leveraged to define DSL explicitly addressing AI concerns. The most prominent AI-related concerns are training and modeling of the AI algorithm, while minor emphasis is given to the time-consuming preparation of the data. Early project phases that support interdisciplinary communication of requirements, e.g., CRISP-DM Business Understanding phase, are rarely reflected. Conclusion:The study found that the use of MDE for AI is still in its early stages, and there is no single tool or method that is widely used. Additionally, current approaches tend to focus on specific stages of development rather than providing support for the entire development process.

For estimating the proportion of false null hypotheses in multiple testing, a family of estimators by Storey (2002) is widely used in the applied and statistical literature, with many methods suggested for selecting the parameter $\lambda$. Inspired by change-point concepts, our new approach to the latter problem first approximates the $p$-value plot with a piecewise linear function with a single change-point and then selects the $p$-value at the change-point location as $\lambda$. Simulations show that our method has among the smallest RMSE across various settings, and we extend it to address the estimation in cases of superuniform $p$-values. We provide asymptotic theory for our estimator, relying on the theory of quantile processes. Additionally, we propose an application in the change-point literature and illustrate it using high-dimensional CNV data.

In this paper, we study some codes of algebraic geometry related to certain maximal curves. Quantum stabilizer codes obtained through the self orthogonality of Hermitian codes of this error correcting do not always have good parameters. However, appropriate parameters found that the Hermitian self-orthogonal code quantum stabilizer code has good parameters. Therefore, we investigated the quantum stabilizer code at a certain maximum curve and modified its parameters. Algebraic geometry codes show promise for enabling high data rate transmission over noisy power line communication channels.

The stability of the Ghurye-Olkin (GO) characterization of Gaussian vectors is analyzed using a partition of the vectors into equivalence classes defined by their matrix factors. The sum of the vectors in each class is near-Gaussian in the characteristic function (c.f.) domain if the GO independence condition is approximately met in the c.f. domain. All vectors have the property that any vector projection is near-Gaussian in the distribution function (d.f.) domain. The proofs of these c.f. and d.f. stabilities use tools that establish the stabilities of theorems by Kac-Bernstein and Cram\'er, respectively. The results are used to prove stability theorems for differential entropies of Gaussian vectors and blind source separation of non-Gaussian sources.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司