Although state-of-the-art classifiers for facial expression recognition (FER) can achieve a high level of accuracy, they lack interpretability, an important feature for end-users. Experts typically associate spatial action units (\aus) from a codebook to facial regions for the visual interpretation of expressions. In this paper, the same expert steps are followed. A new learning strategy is proposed to explicitly incorporate \au cues into classifier training, allowing to train deep interpretable models. During training, this \au codebook is used, along with the input image expression label, and facial landmarks, to construct a \au heatmap that indicates the most discriminative image regions of interest w.r.t the facial expression. This valuable spatial cue is leveraged to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with \au heatmaps. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with \au maps, simulating the expert decision process. Our strategy only relies on image class expression for supervision, without additional manual annotations. Our new strategy is generic, and can be applied to any deep CNN- or transformer-based classifier without requiring any architectural change or significant additional training time. Our extensive evaluation on two public benchmarks \rafdb, and \affectnet datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on class activation mapping (CAM) methods, and show that our approach can also improve CAM interpretability.
Generative models are gaining significant attention as potential catalysts for a novel industrial revolution. Since automated sample generation can be useful to solve privacy and data scarcity issues that usually affect learned biometric models, such technologies became widely spread in this field. In this paper, we assess the vulnerabilities of generative machine learning models concerning identity protection by designing and testing an identity inference attack on fingerprint datasets created by means of a generative adversarial network. Experimental results show that the proposed solution proves to be effective under different configurations and easily extendable to other biometric measurements.
We present a Reinforcement Learning (RL) approach to the problem of controlling the Discontinuous Reception (DRX) policy from a Base Transceiver Station (BTS) in a cellular network. We do so by means of optimally timing the transmission of fast Layer-2 signaling messages (a.k.a. Medium Access Layer (MAC) Control Elements (CEs) as specified in 5G New Radio). Unlike more conventional approaches to DRX optimization, which rely on fine-tuning the values of DRX timers, we assess the gains that can be obtained solely by means of this MAC CE signalling. For the simulation part, we concentrate on traffic types typically encountered in Extended Reality (XR) applications, where the need for battery drain minimization and overheating mitigation are particularly pressing. Both 3GPP 5G New Radio (5G NR) compliant and non-compliant ("beyond 5G") MAC CEs are considered. Our simulation results show that our proposed technique strikes an improved trade-off between latency and energy savings as compared to conventional timer-based approaches that are characteristic of most current implementations. Specifically, our RL-based policy can nearly halve the active time for a single User Equipment (UE) with respect to a na\"ive MAC CE transmission policy, and still achieve near 20% active time reduction for 9 simultaneously served UEs.
Modern speaker verification (SV) systems typically demand expensive storage and computing resources, thereby hindering their deployment on mobile devices. In this paper, we explore adaptive neural network quantization for lightweight speaker verification. Firstly, we propose a novel adaptive uniform precision quantization method which enables the dynamic generation of quantization centroids customized for each network layer based on k-means clustering. By applying it to the pre-trained SV systems, we obtain a series of quantized variants with different bit widths. To enhance the performance of low-bit quantized models, a mixed precision quantization algorithm along with a multi-stage fine-tuning (MSFT) strategy is further introduced. Unlike uniform precision quantization, mixed precision approach allows for the assignment of varying bit widths to different network layers. When bit combination is determined, MSFT is employed to progressively quantize and fine-tune network in a specific order. Finally, we design two distinct binary quantization schemes to mitigate performance degradation of 1-bit quantized models: the static and adaptive quantizers. Experiments on VoxCeleb demonstrate that lossless 4-bit uniform precision quantization is achieved on both ResNets and DF-ResNets, yielding a promising compression ratio of around 8. Moreover, compared to uniform precision approach, mixed precision quantization not only obtains additional performance improvements with a similar model size but also offers the flexibility to generate bit combination for any desirable model size. In addition, our suggested 1-bit quantization schemes remarkably boost the performance of binarized models. Finally, a thorough comparison with existing lightweight SV systems reveals that our proposed models outperform all previous methods by a large margin across various model size ranges.
Neural Radiance Fields (NeRF) presented a novel way to represent scenes, allowing for high-quality 3D reconstruction from 2D images. Following its remarkable achievements, global localization within NeRF maps is an essential task for enabling a wide range of applications. Recently, Loc-NeRF demonstrated a localization approach that combines traditional Monte Carlo Localization with NeRF, showing promising results for using NeRF as an environment map. However, despite its advancements, Loc-NeRF encounters the challenge of a time-intensive ray rendering process, which can be a significant limitation in practical applications. To address this issue, we introduce Fast Loc-NeRF, which leverages a coarse-to-fine approach to enable more efficient and accurate NeRF map-based global localization. Specifically, Fast Loc-NeRF matches rendered pixels and observed images on a multi-resolution from low to high resolution. As a result, it speeds up the costly particle update process while maintaining precise localization results. Additionally, to reject the abnormal particles, we propose particle rejection weighting, which estimates the uncertainty of particles by exploiting NeRF's characteristics and considers them in the particle weighting process. Our Fast Loc-NeRF sets new state-of-the-art localization performances on several benchmarks, convincing its accuracy and efficiency.
Artists are increasingly concerned about advancements in image generation models that can closely replicate their unique artistic styles. In response, several protection tools against style mimicry have been developed that incorporate small adversarial perturbations into artworks published online. In this work, we evaluate the effectiveness of popular protections -- with millions of downloads -- and show they only provide a false sense of security. We find that low-effort and "off-the-shelf" techniques, such as image upscaling, are sufficient to create robust mimicry methods that significantly degrade existing protections. Through a user study, we demonstrate that all existing protections can be easily bypassed, leaving artists vulnerable to style mimicry. We caution that tools based on adversarial perturbations cannot reliably protect artists from the misuse of generative AI, and urge the development of alternative non-technological solutions.
In the real world, documents are organized in different formats and varied modalities. Traditional retrieval pipelines require tailored document parsing techniques and content extraction modules to prepare input for indexing. This process is tedious, prone to errors, and has information loss. To this end, we propose Document Screenshot Embedding} (DSE), a novel retrieval paradigm that regards document screenshots as a unified input format, which does not require any content extraction preprocess and preserves all the information in a document (e.g., text, image and layout). DSE leverages a large vision-language model to directly encode document screenshots into dense representations for retrieval. To evaluate our method, we first craft the dataset of Wiki-SS, a 1.3M Wikipedia web page screenshots as the corpus to answer the questions from the Natural Questions dataset. In such a text-intensive document retrieval setting, DSE shows competitive effectiveness compared to other text retrieval methods relying on parsing. For example, DSE outperforms BM25 by 17 points in top-1 retrieval accuracy. Additionally, in a mixed-modality task of slide retrieval, DSE significantly outperforms OCR text retrieval methods by over 15 points in nDCG@10. These experiments show that DSE is an effective document retrieval paradigm for diverse types of documents. Model checkpoints, code, and Wiki-SS collection will be released.
In this paper, we propose Evidential Conformal Prediction (ECP) method for image classifiers to generate the conformal prediction sets. Our method is designed based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL) as a method of quantifying model (epistemic) uncertainty in DNN classifiers. We use evidence that are derived from the logit values of target labels to compute the components of our non-conformity score function: the heuristic notion of uncertainty in CP, uncertainty surprisal, and expected utility. Our extensive experimental evaluation demonstrates that ECP outperforms three state-of-the-art methods for generating CP sets, in terms of their set sizes and adaptivity while maintaining the coverage of true labels.
Expressive speech synthesis aims to generate speech that captures a wide range of para-linguistic features, including emotion and articulation, though current research primarily emphasizes emotional aspects over the nuanced articulatory features mastered by professional voice actors. Inspired by this, we explore expressive speech synthesis through the lens of articulatory phonetics. Specifically, we define a framework with three dimensions: Glottalization, Tenseness, and Resonance (GTR), to guide the synthesis at the voice production level. With this framework, we record a high-quality speech dataset named GTR-Voice, featuring 20 Chinese sentences articulated by a professional voice actor across 125 distinct GTR combinations. We verify the framework and GTR annotations through automatic classification and listening tests, and demonstrate precise controllability along the GTR dimensions on two fine-tuned expressive TTS models. We open-source the dataset and TTS models.
Technology ecosystems often undergo significant transformations as they mature. For example, telephony, the Internet, and PCs all started with a single provider, but in the United States each is now served by a competitive market that uses comprehensive and universal technology standards to provide compatibility. This white paper presents our view on how the cloud ecosystem, barely over fifteen years old, could evolve as it matures.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.