This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.
Over the past few years, the use of swarms of Unmanned Aerial Vehicles (UAVs) in monitoring and remote area surveillance applications has become widespread thanks to the price reduction and the increased capabilities of drones. The drones in the swarm need to cooperatively explore an unknown area, in order to identify and monitor interesting targets, while minimizing their movements. In this work, we propose a distributed Reinforcement Learning (RL) approach that scales to larger swarms without modifications. The proposed framework relies on the possibility for the UAVs to exchange some information through a communication channel, in order to achieve context-awareness and implicitly coordinate the swarm's actions. Our experiments show that the proposed method can yield effective strategies, which are robust to communication channel impairments, and that can easily deal with non-uniform distributions of targets and obstacles. Moreover, when agents are trained in a specific scenario, they can adapt to a new one with minimal additional training. We also show that our approach achieves better performance compared to a computationally intensive look-ahead heuristic.
User scheduling is a classical problem and key technology in wireless communication, which will still plays an important role in the prospective 6G. There are many sophisticated schedulers that are widely deployed in the base stations, such as Proportional Fairness (PF) and Round-Robin Fashion (RRF). It is known that the Opportunistic (OP) scheduling is the optimal scheduler for maximizing the average user data rate (AUDR) considering the full buffer traffic. But the optimal strategy achieving the highest fairness still remains largely unknown both in the full buffer traffic and the bursty traffic. In this work, we investigate the problem of fairness-oriented user scheduling, especially for the RBG allocation. We build a user scheduler using Multi-Agent Reinforcement Learning (MARL), which conducts distributional optimization to maximize the fairness of the communication system. The agents take the cross-layer information (e.g. RSRP, Buffer size) as state and the RBG allocation result as action, then explore the optimal solution following a well-defined reward function designed for maximizing fairness. Furthermore, we take the 5%-tile user data rate (5TUDR) as the key performance indicator (KPI) of fairness, and compare the performance of MARL scheduling with PF scheduling and RRF scheduling by conducting extensive simulations. And the simulation results show that the proposed MARL scheduling outperforms the traditional schedulers.
Unlike theoretical distributed learning (DL), DL over wireless edge networks faces the inherent dynamics/uncertainty of wireless connections and edge nodes, making DL less efficient or even inapplicable under the highly dynamic wireless edge networks (e.g., using mmW interfaces). This article addresses these problems by leveraging recent advances in coded computing and the deep dueling neural network architecture. By introducing coded structures/redundancy, a distributed learning task can be completed without waiting for straggling nodes. Unlike conventional coded computing that only optimizes the code structure, coded distributed learning over the wireless edge also requires to optimize the selection/scheduling of wireless edge nodes with heterogeneous connections, computing capability, and straggling effects. However, even neglecting the aforementioned dynamics/uncertainty, the resulting joint optimization of coding and scheduling to minimize the distributed learning time turns out to be NP-hard. To tackle this and to account for the dynamics and uncertainty of wireless connections and edge nodes, we reformulate the problem as a Markov Decision Process and then design a novel deep reinforcement learning algorithm that employs the deep dueling neural network architecture to find the jointly optimal coding scheme and the best set of edge nodes for different learning tasks without explicit information about the wireless environment and edge nodes' straggling parameters. Simulations show that the proposed framework reduces the average learning delay in wireless edge computing up to 66% compared with other DL approaches. The jointly optimal framework in this article is also applicable to any distributed learning scheme with heterogeneous and uncertain computing nodes.
Large-scale machine learning and data mining methods routinely distribute computations across multiple agents to parallelize processing. The time required for the computations at the agents is affected by the availability of local resources giving rise to the "straggler problem". As a remedy to this problem, linear coding of the matrix sub-blocks can be used, i.e., the Parameter Server (PS) utilizes a channel code to encode the matrix sub-blocks and distributes these matrices to the workers for multiplication. In this paper, we employ Unequal Error Protection (UEP) codes to obtain an approximation of the matrix product in the distributed computation setting in the presence of stragglers. The resiliency level of each sub-block is chosen according to its norm, as blocks with larger norms have higher effects on the result of the matrix multiplication. In particular, we consider two approaches in distributing the matrix computation: (i) a row-times-column paradigm, and (ii) a column-times-row paradigm. For both paradigms, we characterize the performance of the proposed approach from a theoretical perspective by bounding the expected reconstruction error for matrices with uncorrelated entries. We also apply the proposed coding strategy to the computation of the back-propagation step in the training of a Deep Neural Network (DNN) for an image classification task in the evaluation of the gradient during back-propagation. Our numerical experiments show that it is indeed possible to obtain significant improvements in the overall time required to achieve the DNN training convergence by producing matrix product approximations using UEP codes.
Nowadays, Deep Neural Networks are widely applied to various domains. However, massive data collection required for deep neural network reveals the potential privacy issues and also consumes large mounts of communication bandwidth. To address these problems, we propose a privacy-preserving method for the federated learning distributed system, operated on Intel Software Guard Extensions, a set of instructions that increase the security of application code and data. Meanwhile, the encrypted models make the transmission overhead larger. Hence, we reduce the commutation cost by sparsification and it can achieve reasonable accuracy with different model architectures.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.
Efficient exploration remains a major challenge for reinforcement learning. One reason is that the variability of the returns often depends on the current state and action, and is therefore heteroscedastic. Classical exploration strategies such as upper confidence bound algorithms and Thompson sampling fail to appropriately account for heteroscedasticity, even in the bandit setting. Motivated by recent findings that address this issue in bandits, we propose to use Information-Directed Sampling (IDS) for exploration in reinforcement learning. As our main contribution, we build on recent advances in distributional reinforcement learning and propose a novel, tractable approximation of IDS for deep Q-learning. The resulting exploration strategy explicitly accounts for both parametric uncertainty and heteroscedastic observation noise. We evaluate our method on Atari games and demonstrate a significant improvement over alternative approaches.
Most Deep Reinforcement Learning (Deep RL) algorithms require a prohibitively large number of training samples for learning complex tasks. Many recent works on speeding up Deep RL have focused on distributed training and simulation. While distributed training is often done on the GPU, simulation is not. In this work, we propose using GPU-accelerated RL simulations as an alternative to CPU ones. Using NVIDIA Flex, a GPU-based physics engine, we show promising speed-ups of learning various continuous-control, locomotion tasks. With one GPU and CPU core, we are able to train the Humanoid running task in less than 20 minutes, using 10-1000x fewer CPU cores than previous works. We also demonstrate the scalability of our simulator to multi-GPU settings to train more challenging locomotion tasks.
This paper presents a new multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We propose the use of linear and non-linear methods to develop the MODRL framework that includes both single-policy and multi-policy strategies. The experimental results on two benchmark problems including the two-objective deep sea treasure environment and the three-objective mountain car problem indicate that the proposed framework is able to converge to the optimal Pareto solutions effectively. The proposed framework is generic, which allows implementation of different deep reinforcement learning algorithms in different complex environments. This therefore overcomes many difficulties involved with standard multi-objective reinforcement learning (MORL) methods existing in the current literature. The framework creates a platform as a testbed environment to develop methods for solving various problems associated with the current MORL. Details of the framework implementation can be referred to //www.deakin.edu.au/~thanhthi/drl.htm.
We propose a fully distributed actor-critic algorithm approximated by deep neural networks, named \textit{Diff-DAC}, with application to single-task and to average multitask reinforcement learning (MRL). Each agent has access to data from its local task only, but it aims to learn a policy that performs well on average for the whole set of tasks. During the learning process, agents communicate their value-policy parameters to their neighbors, diffusing the information across the network, so that they converge to a common policy, with no need for a central node. The method is scalable, since the computational and communication costs per agent grow with its number of neighbors. We derive Diff-DAC's from duality theory and provide novel insights into the standard actor-critic framework, showing that it is actually an instance of the dual ascent method that approximates the solution of a linear program. Experiments suggest that Diff-DAC can outperform the single previous distributed MRL approach (i.e., Dist-MTLPS) and even the centralized architecture.