Hyperspectral image (HSI) classification has been a hot topic for decides, as hyperspectral images have rich spatial and spectral information and provide strong basis for distinguishing different land-cover objects. Benefiting from the development of deep learning technologies, deep learning based HSI classification methods have achieved promising performance. Recently, several neural architecture search (NAS) algorithms have been proposed for HSI classification, which further improve the accuracy of HSI classification to a new level. In this paper, NAS and Transformer are combined for handling HSI classification task for the first time. Compared with previous work, the proposed method has two main differences. First, we revisit the search spaces designed in previous HSI classification NAS methods and propose a novel hybrid search space, consisting of the space dominated cell and the spectrum dominated cell. Compared with search spaces proposed in previous works, the proposed hybrid search space is more aligned with the characteristic of HSI data, that is, HSIs have a relatively low spatial resolution and an extremely high spectral resolution. Second, to further improve the classification accuracy, we attempt to graft the emerging transformer module on the automatically designed convolutional neural network (CNN) to add global information to local region focused features learned by CNN. Experimental results on three public HSI datasets show that the proposed method achieves much better performance than comparison approaches, including manually designed network and NAS based HSI classification methods. Especially on the most recently captured dataset Houston University, overall accuracy is improved by nearly 6 percentage points. Code is available at: //github.com/Cecilia-xue/HyT-NAS.
The spatio-spectral total variation (SSTV) model has been widely used as an effective regularization of hyperspectral images (HSI) for various applications such as mixed noise removal. However, since SSTV computes local spatial differences uniformly, it is difficult to remove noise while preserving complex spatial structures with fine edges and textures, especially in situations of high noise intensity. To solve this problem, we propose a new TV-type regularization called Graph-SSTV (GSSTV), which generates a graph explicitly reflecting the spatial structure of the target HSI from noisy HSIs and incorporates a weighted spatial difference operator designed based on this graph. Furthermore, we formulate the mixed noise removal problem as a convex optimization problem involving GSSTV and develop an efficient algorithm based on the primal-dual splitting method to solve this problem. Finally, we demonstrate the effectiveness of GSSTV compared with existing HSI regularization models through experiments on mixed noise removal. The source code will be available at //www.mdi.c.titech.ac.jp/publications/gsstv.
Traffic speed prediction is the key to many valuable applications, and it is also a challenging task because of its various influencing factors. Recent work attempts to obtain more information through various hybrid models, thereby improving the prediction accuracy. However, the spatial information acquisition schemes of these methods have two-level differentiation problems. Either the modeling is simple but contains little spatial information, or the modeling is complete but lacks flexibility. In order to introduce more spatial information on the basis of ensuring flexibility, this paper proposes IRNet (Transferable Intersection Reconstruction Network). First, this paper reconstructs the intersection into a virtual intersection with the same structure, which simplifies the topology of the road network. Then, the spatial information is subdivided into intersection information and sequence information of traffic flow direction, and spatiotemporal features are obtained through various models. Third, a self-attention mechanism is used to fuse spatiotemporal features for prediction. In the comparison experiment with the baseline, not only the prediction effect, but also the transfer performance has obvious advantages.
Fasteners play a critical role in securing various parts of machinery. Deformations such as dents, cracks, and scratches on the surface of fasteners are caused by material properties and incorrect handling of equipment during production processes. As a result, quality control is required to ensure safe and reliable operations. The existing defect inspection method relies on manual examination, which consumes a significant amount of time, money, and other resources; also, accuracy cannot be guaranteed due to human error. Automatic defect detection systems have proven impactful over the manual inspection technique for defect analysis. However, computational techniques such as convolutional neural networks (CNN) and deep learning-based approaches are evolutionary methods. By carefully selecting the design parameter values, the full potential of CNN can be realised. Using Taguchi-based design of experiments and analysis, an attempt has been made to develop a robust automatic system in this study. The dataset used to train the system has been created manually for M14 size nuts having two labeled classes: Defective and Non-defective. There are a total of 264 images in the dataset. The proposed sequential CNN comes up with a 96.3% validation accuracy, 0.277 validation loss at 0.001 learning rate.
This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.
Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.
Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.
Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.
Deep learning (DL) based semantic segmentation methods have been providing state-of-the-art performance in the last few years. More specifically, these techniques have been successfully applied to medical image classification, segmentation, and detection tasks. One deep learning technique, U-Net, has become one of the most popular for these applications. In this paper, we propose a Recurrent Convolutional Neural Network (RCNN) based on U-Net as well as a Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net models, which are named RU-Net and R2U-Net respectively. The proposed models utilize the power of U-Net, Residual Network, as well as RCNN. There are several advantages of these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architecture. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architecture with same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets such as blood vessel segmentation in retina images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models including U-Net and residual U-Net (ResU-Net).
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.