亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Continuous innovations profoundly impact the financial and commercial domains, reshaping conventional business practices. Among the disruptive forces, Artificial Intelligence (AI), Machine Learning (ML), and blockchain technology stand out prominently. This study aims to evaluate the integration of blockchain, AI, and ML within financial accounting practices. It suggests a potential revolutionary impact on financial accounting through the adoption of blockchain technology and ML, promising reduced accounting expenses, heightened precision, real-time financial reporting capabilities, and expeditious auditing processes. AI's role in automating repetitive financial accounting tasks assists organizations in circumventing the need for additional staff, thereby minimizing associated costs. Consequently, to bolster efficiency, businesses are increasingly embracing blockchain technology and AI applications in their financial accounting operations.

相關內容

區塊鏈(Blockchain)是由(you)節點參與(yu)的分布式數據庫系統,它的特點是不可(ke)更改,不可(ke)偽造,也可(ke)以將其理解為賬簿系統(ledger)。它是比特幣(bi)的一個重要概(gai)念,完整比特幣(bi)區塊鏈的副本,記錄了其代(dai)幣(bi)(token)的每(mei)一筆交易。通過(guo)這些信息,我(wo)們可(ke)以找到每(mei)一個地址,在歷(li)史上任何一點所(suo)擁有的價值。

知識薈萃

精品入門(men)和進階教程、論文和代(dai)碼整理(li)等(deng)

更多

查(cha)看相(xiang)關VIP內容、論文(wen)、資(zi)訊等

Reflective surfaces present a persistent challenge for reliable 3D mapping and perception in robotics and autonomous systems. However, existing reflection datasets and benchmarks remain limited to sparse 2D data. This paper introduces the first large-scale 3D reflection detection dataset containing more than 50,000 aligned samples of multi-return Lidar, RGB images, and 2D/3D semantic labels across diverse indoor environments with various reflections. Textured 3D ground truth meshes enable automatic point cloud labeling to provide precise ground truth annotations. Detailed benchmarks evaluate three Lidar point cloud segmentation methods, as well as current state-of-the-art image segmentation networks for glass and mirror detection. The proposed dataset advances reflection detection by providing a comprehensive testbed with precise global alignment, multi-modal data, and diverse reflective objects and materials. It will drive future research towards reliable reflection detection. The dataset is publicly available at //3dref.github.io

Social media users may perceive moderation decisions by the platform differently, which can lead to frustration and dropout. This study investigates users' perceived justice and fairness of online moderation decisions when they are exposed to various illegal versus legal scenarios, retributive versus restorative moderation strategies, and user-moderated versus commercially moderated platforms. We conduct an online experiment on 200 American social media users of Reddit and Twitter. Results show that retributive moderation delivers higher justice and fairness for commercially moderated than for user-moderated platforms in illegal violations; restorative moderation delivers higher fairness for legal violations than illegal ones. We discuss the opportunities for platform policymaking to improve moderation system design.

Prognostics and Health Management (PHM) is a discipline focused on predicting the point at which systems or components will cease to perform as intended, typically measured as Remaining Useful Life (RUL). RUL serves as a vital decision-making tool for contingency planning, guiding the timing and nature of system maintenance. Historically, PHM has primarily been applied to hardware systems, with its application to software only recently explored. In a recent study we introduced a methodology and demonstrated how changes in software can impact the RUL of software. However, in practical software development, real-time performance is also influenced by various environmental attributes, including operating systems, clock speed, processor performance, RAM, machine core count and others. This research extends the analysis to assess how changes in environmental attributes, such as operating system and clock speed, affect RUL estimation in software. Findings are rigorously validated using real performance data from controlled test beds and compared with predictive model-generated data. Statistical validation, including regression analysis, supports the credibility of the results. The controlled test bed environment replicates and validates faults from real applications, ensuring a standardized assessment platform. This exploration yields actionable knowledge for software maintenance and optimization strategies, addressing a significant gap in the field of software health management.

Hyper-redundant Robotic Manipulators (HRMs) offer great dexterity and flexibility of operation, but solving Inverse Kinematics (IK) is challenging. In this work, we introduce VO-FABRIK, an algorithm combining Forward and Backward Reaching Inverse Kinematics (FABRIK) for repeatable deterministic IK computation, and an approach inspired from velocity obstacles to perform path planning under collision and joint limits constraints. We show preliminary results on an industrial HRM with 19 actuated joints. Our algorithm achieves good performance where a state-of-the-art IK solver fails.

AI-Generated Content (AIGC) is gaining great popularity, with many emerging commercial services and applications. These services leverage advanced generative models, such as latent diffusion models and large language models, to generate creative content (e.g., realistic images and fluent sentences) for users. The usage of such generated content needs to be highly regulated, as the service providers need to ensure the users do not violate the usage policies (e.g., abuse for commercialization, generating and distributing unsafe content). A promising solution to achieve this goal is watermarking, which adds unique and imperceptible watermarks on the content for service verification and attribution. Numerous watermarking approaches have been proposed recently. However, in this paper, we show that an adversary can easily break these watermarking mechanisms. Specifically, we consider two possible attacks. (1) Watermark removal: the adversary can easily erase the embedded watermark from the generated content and then use it freely bypassing the regulation of the service provider. (2) Watermark forging: the adversary can create illegal content with forged watermarks from another user, causing the service provider to make wrong attributions. We propose Warfare, a unified methodology to achieve both attacks in a holistic way. The key idea is to leverage a pre-trained diffusion model for content processing and a generative adversarial network for watermark removal or forging. We evaluate Warfare on different datasets and embedding setups. The results prove that it can achieve high success rates while maintaining the quality of the generated content. Compared to existing diffusion model-based attacks, Warfare is 5,050~11,000x faster.

In the evolving domain of cryptocurrency markets, accurate token valuation remains a critical aspect influencing investment decisions and policy development. Whilst the prevailing equation of exchange pricing model offers a quantitative valuation approach based on the interplay between token price, transaction volume, supply, and either velocity or holding time, it exhibits intrinsic shortcomings. Specifically, the model may not consistently delineate the relationship between average token velocity and holding time. This paper aims to refine this equation, enhancing the depth of insight into token valuation methodologies.

Automatic machine translation metrics typically rely on human translations to determine the quality of system translations. Common wisdom in the field dictates that the human references should be of very high quality. However, there are no cost-benefit analyses that could be used to guide practitioners who plan to collect references for machine translation evaluation. We find that higher-quality references lead to better metric correlations with humans at the segment-level. Having up to 7 references per segment and taking their average (or maximum) helps all metrics. Interestingly, the references from vendors of different qualities can be mixed together and improve metric success. Higher quality references, however, cost more to create and we frame this as an optimization problem: given a specific budget, what references should be collected to maximize metric success. These findings can be used by evaluators of shared tasks when references need to be created under a certain budget.

Investigating the increasingly popular domain of short video consumption, this study focuses on the impact of Opinion Polarization (OP), a significant factor in the digital landscape influencing public opinions and social interactions. We analyze OP's effect on viewers' perceptions and behaviors, finding that traditional feedback metrics like likes and watch time fail to fully capture and measure OP. Addressing this gap, our research utilizes Electroencephalogram (EEG) signals to introduce a novel, non-invasive approach for evaluating neural responses to OP, affecting perception and cognition. Empirical analysis reveals OP's considerable impact on viewers' emotions, evidenced by changes in brain activity. Our findings also highlight the potential of EEG data in predicting exposure to polarized short video content, offering a new perspective on the dynamics of short video consumption and a unique method for quantifying OP's effects.

Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence. While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a framework that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., Hugging Face) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in Hugging Face, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in Hugging Face, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards artificial general intelligence.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

北京阿比特科技有限公司