亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Question answering is a task that answers factoid questions using a large collection of documents. It aims to provide precise answers in response to the user's questions in natural language. Question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. On the web, there is no single article that could provide all the possible answers available on the internet to the question of the problem asked by the user. The existing Dense Passage Retrieval model has been trained on Wikipedia dump from Dec. 20, 2018, as the source documents for answering questions. Question answering (QA) has made big strides with several open-domain and machine comprehension systems built using large-scale annotated datasets. However, in the clinical domain, this problem remains relatively unexplored. According to multiple surveys, Biomedical Questions cannot be answered correctly from Wikipedia Articles. In this work, we work on the existing DPR framework for the biomedical domain and retrieve answers from the Pubmed articles which is a reliable source to answer medical questions. When evaluated on a BioASQ QA dataset, our fine-tuned dense retriever results in a 0.81 F1 score.

相關內容

自(zi)(zi)動問答(da)(da)(Question Answering, QA)是(shi)(shi)指利用(yong)計算(suan)機自(zi)(zi)動回答(da)(da)用(yong)戶(hu)所(suo)提出的(de)(de)問題以滿足用(yong)戶(hu)知識需(xu)求的(de)(de)任務。不(bu)同于現有(you)搜(sou)索引擎,問答(da)(da)系統(tong)是(shi)(shi)信(xin)息(xi)服務的(de)(de)一種高(gao)級形式,系統(tong)返回用(yong)戶(hu)的(de)(de)不(bu)再是(shi)(shi)基于關鍵詞匹配排(pai)序(xu)的(de)(de)文檔列表(biao),而是(shi)(shi)精準的(de)(de)自(zi)(zi)然語言答(da)(da)案(an)。近(jin)年來,隨著(zhu)人工智(zhi)能的(de)(de)飛速發展,自(zi)(zi)動問答(da)(da)已(yi)經成(cheng)為倍受關注且發展前景廣泛(fan)的(de)(de)研究方(fang)向(xiang)。

知識薈萃

精品入門和進(jin)階教程(cheng)、論文和代碼整(zheng)理等

更多

查看相關VIP內(nei)容、論(lun)文、資訊等

Compositional generalization is a key ability of humans that enables us to learn new concepts from only a handful examples. Machine learning models, including the now ubiquitous transformers, struggle to generalize in this way, and typically require thousands of examples of a concept during training in order to generalize meaningfully. This difference in ability between humans and artificial neural architectures, motivates this study on a neuro-symbolic architecture called the Compositional Program Generator (CPG). CPG has three key features: modularity, type abstraction, and recursive composition, that enable it to generalize both systematically to new concepts in a few-shot manner, as well as productively by length on various sequence-to-sequence language tasks. For each input, CPG uses a grammar of the input domain and a parser to generate a type hierarchy in which each grammar rule is assigned its own unique semantic module, a probabilistic copy or substitution program. Instances with the same hierarchy are processed with the same composed program, while those with different hierarchies may be processed with different programs. CPG learns parameters for the semantic modules and is able to learn the semantics for new types incrementally. Given a context-free grammar of the input language and a dictionary mapping each word in the source language to its interpretation in the output language, CPG can achieve perfect generalization on the SCAN and COGS benchmarks, in both standard and extreme few-shot settings.

Product Lines (PL) have proved an effective approach to reuse-based systems development. Several modeling languages were proposed so far to specify PL. Although they can be very different, these languages show two common features: they emphasize (a) variability, and (b) the specification of constraints to define acceptable configurations. It is now widely acknowledged that configuring a product can be considered as a constraint satisfaction problem. It is thus natural to consider constraint programming as a first choice candidate to specify constraints on PL. For instance, the different constraints that can be specified using the FODA language can easily be expressed using boolean constraints, which enables automated calculation and configuration using a SAT solver. But constraint programming proposes other domains than the boolean domain: for instance integers, real, or sets. The integer domain was, for instance, proposed by Benavides to specify constraints on feature attributes. This paper proposes to further explore the use of integer constraint programming to specify PL constraints. The approach was implemented in a prototype tool. Its use in a real case showed that constraint programming encompasses different PL modeling languages (such as FORE, OVM, or else), and allows specifying complex constraints that are difficult to specify with these languages.

Designing models that are both expressive and preserve known invariances of tasks is an increasingly hard problem. Existing solutions tradeoff invariance for computational or memory resources. In this work, we show how to leverage randomness and design models that are both expressive and invariant but use less resources. Inspired by randomized algorithms, our key insight is that accepting probabilistic notions of universal approximation and invariance can reduce our resource requirements. More specifically, we propose a class of binary classification models called Randomized Linear Classifiers (RLCs). We give parameter and sample size conditions in which RLCs can, with high probability, approximate any (smooth) function while preserving invariance to compact group transformations. Leveraging this result, we design three RLCs that are provably probabilistic invariant for classification tasks over sets, graphs, and spherical data. We show how these models can achieve probabilistic invariance and universality using less resources than (deterministic) neural networks and their invariant counterparts. Finally, we empirically demonstrate the benefits of this new class of models on invariant tasks where deterministic invariant neural networks are known to struggle.

Acoustic howling suppression (AHS) is a critical challenge in audio communication systems. In this paper, we propose a novel approach that leverages the power of neural networks (NN) to enhance the performance of traditional Kalman filter algorithms for AHS. Specifically, our method involves the integration of NN modules into the Kalman filter, enabling refining reference signal, a key factor in effective adaptive filtering, and estimating covariance metrics for the filter which are crucial for adaptability in dynamic conditions, thereby obtaining improved AHS performance. As a result, the proposed method achieves improved AHS performance compared to both standalone NN and Kalman filter methods. Experimental evaluations validate the effectiveness of our approach.

Valued constraint satisfaction problems (VCSPs) are a large class of computational optimisation problems. If the variables of a VCSP take values from a finite domain, then recent results in constraint satisfaction imply that the problem is in P or NP-complete, depending on the set of admitted cost functions. Here we study the larger class of cost functions over countably infinite domains that have an oligomorphic automorphism group. We present a hardness condition based on a generalisation of pp-constructability as known for (classical) CSPs. We also provide a universal-algebraic polynomial-time tractability condition, based on the concept of fractional polymorphisms. We apply our general theory to study the computational complexity of resilience problems in database theory (under bag semantics). We show how to construct, for every fixed conjunctive query (and more generally for every union of conjunctive queries), a set of cost functions with an oligomorphic automorphism group such that the resulting VCSP is polynomial-time equivalent to the resilience problem; we only require that the query is connected and show that this assumption can be made without loss of generality. For the case where the query is acylic, we obtain a complexity dichotomy of the resilience problem, based on the dichotomy for finite-domain VCSPs. To illustrate the utility of our methods, we exemplarily settle the complexity of a (non-acyclic) conjunctive query whose computational complexity remained open in the literature by verifying that it satisfies our tractability condition. We conjecture that for resilience problems, our hardness and tractability conditions match, which would establish a complexity dichotomy for resilience problems for (unions of) conjunctive queries.

This work presents a hierarchical framework for bipedal locomotion that combines a Reinforcement Learning (RL)-based high-level (HL) planner policy for the online generation of task space commands with a model-based low-level (LL) controller to track the desired task space trajectories. Different from traditional end-to-end learning approaches, our HL policy takes insights from the angular momentum-based linear inverted pendulum (ALIP) to carefully design the observation and action spaces of the Markov Decision Process (MDP). This simple yet effective design creates an insightful mapping between a low-dimensional state that effectively captures the complex dynamics of bipedal locomotion and a set of task space outputs that shape the walking gait of the robot. The HL policy is agnostic to the task space LL controller, which increases the flexibility of the design and generalization of the framework to other bipedal robots. This hierarchical design results in a learning-based framework with improved performance, data efficiency, and robustness compared with the ALIP model-based approach and state-of-the-art learning-based frameworks for bipedal locomotion. The proposed hierarchical controller is tested in three different robots, Rabbit, a five-link underactuated planar biped; Walker2D, a seven-link fully-actuated planar biped; and Digit, a 3D humanoid robot with 20 actuated joints. The trained policy naturally learns human-like locomotion behaviors and is able to effectively track a wide range of walking speeds while preserving the robustness and stability of the walking gait even under adversarial conditions.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

北京阿比特科技有限公司