亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have presented impressive performance across several transformative tasks. However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs, often riddled with numerous challenges such as frequent hardware failures, intricate parallelization strategies, and imbalanced resource utilization. In this paper, we present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme. Specifically, we investigate discrepancies between LLMs and prior task-specific Deep Learning (DL) workloads, explore resource utilization patterns, and identify the impact of various job failures. Our analysis summarizes hurdles we encountered and uncovers potential opportunities to optimize systems tailored for LLMs. Furthermore, we introduce our system efforts: (1) fault-tolerant pretraining, which enhances fault tolerance through LLM-involved failure diagnosis and automatic recovery. (2) decoupled scheduling for evaluation, which achieves timely performance feedback via trial decomposition and scheduling optimization.

相關內容

大語言模型是基于海量文本數據訓練的深度學習模型。它不僅能夠生成自然語言文本,還能夠深入理解文本含義,處理各種自然語言任務,如文本摘要、問答、翻譯等。2023年,大語言模型及其在人工智能領域的應用已成為全球科技研究的熱點,其在規模上的增長尤為引人注目,參數量已從最初的十幾億躍升到如今的一萬億。參數量的提升使得模型能夠更加精細地捕捉人類語言微妙之處,更加深入地理解人類語言的復雜性。在過去的一年里,大語言模型在吸納新知識、分解復雜任務以及圖文對齊等多方面都有顯著提升。隨著技術的不斷成熟,它將不斷拓展其應用范圍,為人類提供更加智能化和個性化的服務,進一步改善人們的生活和生產方式。

Language models have improved by orders of magnitude with the recent emergence of Transformer-based Large Language Models (LLMs). LLMs have demonstrated their ability to generate natural code that is highly similar to code written by professional developers. One intermediate value an LLM can emit is entropy, which measures the naturalness of a token of code. We hypothesize that entropy can be used to improve the performance of Automated Program Repair (APR) tasks. While much progress has been made in Automated Program Repair (APR), fault localization techniques suffer from a lack of diversity in ranking scores, patch generation tools tend to be inefficient as all tests need to run before determining if a patch is likely to be correct, and patch ranking often suffers from the test-suite over-fitting problem. However, using an LLM directly for APR introduces concerns for training data leakage. In this work, we introduce a novel way of using the entropy of LLMs in combination with prior APR tools to improve all stages of APR. We show that entropy is highly complementary with prior fault localization tools. Our proposed re-ranking method achieves a 50% Top-5 score improvement over SBFL. We propose a patch-naturalness measurement, entropy-delta, to improve the efficiency of template-based repair techniques by ranking plausible patches before undergoing testing. When using entropy-delta for patch ranking and classification, our proposed method can rank correct patches more effectively than state-of-the-art machine learning tools with an 49% improvement in Top-1. Our work suggests that LLMs can be an effective addition to compliment prior APR tasks while minimizing both the test-suite overfitting problem and the LLM data leakage problem.

Constrained Horn Clauses (CHCs) have conventionally been used as a low-level representation in formal verification. Most existing solvers use a diverse set of specialized techniques, including direct state space traversal or under-approximating abstraction, necessitating purpose-built complex algorithms. Other solvers successfully simplified the verification workflow by translating the problem to inputs for other verification tasks, leveraging the strengths of existing algorithms. One such approach transforms the CHC problem into a recursive program roughly emulating a top-down solver for the deduction task; and verifying the reachability of a safety violation specified as a control location. We propose an alternative bottom-up approach for linear CHCs, and evaluate the two options in the open-source model checking framework THETA on both synthetic and industrial examples. We find that there is a more than twofold increase in the number of solved tasks when the novel bottom-up approach is used in the verification workflow, in contrast with the top-down technique.

According to the World Health Organization, the involvement of Vulnerable Road Users (VRUs) in traffic accidents remains a significant concern, with VRUs accounting for over half of traffic fatalities. The increase of automation and connectivity levels of vehicles has still an uncertain impact on VRU safety. By deploying the Collective Perception Service (CPS), vehicles can include information about VRUs in Vehicle-to-Everything (V2X) messages, thus raising the general perception of the environment. Although an increased awareness is considered positive, one could argue that the awareness ratio, the metric used to measure perception, is only implicitly connected to the VRUs' safety. This paper introduces a tailored metric, the Risk Factor (RF), to measure the risk level for the interactions between Connected Automated Vehicles (CAVs) and VRUs. By evaluating the RF, we assess the impact of V2X communication on VRU risk mitigation. Our results show that high V2X penetration rates can reduce mean risk, quantified by our proposed metric, by up to 44%. Although the median risk value shows a significant decrease, suggesting a reduction in overall risk, the distribution of risk values reveals that CPS's mitigation effectiveness is overestimated, which is indicated by the divergence between RF and awareness ratio. Additionally, by analyzing a real-world traffic dataset, we pinpoint high-risk locations within a scenario, identifying areas near intersections and behind parked cars as especially dangerous. Our methodology can be ported and applied to other scenarios in order to identify high-risk areas. We value the proposed RF as an insightful metric for quantifying VRU safety in a highly automated and connected environment.

Large Language Models (LLMs) have demonstrated remarkable performance across a spectrum of tasks. Recently, Direct Preference Optimization (DPO) has emerged as an RL-free approach to optimize the policy model on human preferences. However, several limitations hinder the widespread adoption of this method. To address these shortcomings, various versions of DPO have been introduced. Yet, a comprehensive evaluation of these variants across diverse tasks is still lacking. In this study, we aim to bridge this gap by investigating the performance of alignment methods across three distinct scenarios: (1) keeping the Supervised Fine-Tuning (SFT) part, (2) skipping the SFT part, and (3) skipping the SFT part and utilizing an instruction-tuned model. Furthermore, we explore the impact of different training sizes on their performance. Our evaluation spans a range of tasks including dialogue systems, reasoning, mathematical problem-solving, question answering, truthfulness, and multi-task understanding, encompassing 13 benchmarks such as MT-Bench, Big Bench, and Open LLM Leaderboard. Key observations reveal that alignment methods achieve optimal performance with smaller training data subsets, exhibit limited effectiveness in reasoning tasks yet significantly impact mathematical problem-solving, and employing an instruction-tuned model notably influences truthfulness. We anticipate that our findings will catalyze further research aimed at developing more robust models to address alignment challenges.

Large Language Models (LLMs) have attracted extensive attention due to their remarkable performance across various tasks. However, the substantial computational and memory requirements of LLM inference pose challenges for deployment in resource-constrained scenarios. Efforts within the field have been directed towards developing techniques aimed at enhancing the efficiency of LLM inference. This paper presents a comprehensive survey of the existing literature on efficient LLM inference. We start by analyzing the primary causes of the inefficient LLM inference, i.e., the large model size, the quadratic-complexity attention operation, and the auto-regressive decoding approach. Then, we introduce a comprehensive taxonomy that organizes the current literature into data-level, model-level, and system-level optimization. Moreover, the paper includes comparative experiments on representative methods within critical sub-fields to provide quantitative insights. Last but not least, we provide some knowledge summary and discuss future research directions.

In this paper, we consider the problem of reference tracking in uncertain nonlinear systems. A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data, and a state-space component captures the temporal relationship. This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions. Our objective is to design the optimal controller using limited data from the \textit{target system} (the system of interest). To this end, we employ an implicit model-agnostic meta-learning (iMAML) framework that leverages information from \textit{source systems} (systems that share similarities with the target system) to expedite training in the target system and enhance its control performance. The framework consists of two phases: the (offine) meta-training phase learns a aggregated NSSM using data from source systems, and the (online) meta-inference phase quickly adapts this aggregated model to the target system using only a few data points and few online training iterations, based on local loss function gradients. The iMAML algorithm exploits the implicit function theorem to exactly compute the gradient during training, without relying on the entire optimization path. By focusing solely on the optimal solution, rather than the path, we can meta-train with less storage complexity and fewer approximations than other contemporary meta-learning algorithms. We demonstrate through numerical examples that our proposed method can yield accurate predictive models by adaptation, resulting in a downstream MPC that outperforms several baselines.

Dopamine transporter (DAT) imaging is commonly used for monitoring Parkinson's disease (PD), where striatal DAT uptake amount is computed to assess PD severity. However, DAT imaging has a high cost and the risk of radiance exposure and is not available in general clinics. Recently, MRI patch of the nigral region has been proposed as a safer and easier alternative. This paper proposes a symmetric regressor for predicting the DAT uptake amount from the nigral MRI patch. Acknowledging the symmetry between the right and left nigrae, the proposed regressor incorporates a paired input-output model that simultaneously predicts the DAT uptake amounts for both the right and left striata. Moreover, it employs a symmetric loss that imposes a constraint on the difference between right-to-left predictions, resembling the high correlation in DAT uptake amounts in the two lateral sides. Additionally, we propose a symmetric Monte-Carlo (MC) dropout method for providing a fruitful uncertainty estimate of the DAT uptake prediction, which utilizes the above symmetry. We evaluated the proposed approach on 734 nigral patches, which demonstrated significantly improved performance of the symmetric regressor compared with the standard regressors while giving better explainability and feature representation. The symmetric MC dropout also gave precise uncertainty ranges with a high probability of including the true DAT uptake amounts within the range.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

北京阿比特科技有限公司