Modern cars are evolving in many ways. Technologies such as infotainment systems and companion mobile applications collect a variety of personal data from drivers to enhance the user experience. This paper investigates the extent to which car drivers understand the implications for their privacy, including that car manufacturers must treat that data in compliance with the relevant regulations. It does so by distilling out drivers' concerns on privacy and relating them to their perceptions of trust on car cyber-security. A questionnaire is designed for such purposes to collect answers from a set of 1101 participants, so that the results are statistically relevant. In short, privacy concerns are modest, perhaps because there still is insufficient general awareness on the personal data that are involved, both for in-vehicle treatment and for transmission over the Internet. Trust perceptions on cyber-security are modest too (lower than those on car safety), a surprising contradiction to our research hypothesis that privacy concerns and trust perceptions on car cyber-security are opponent. We interpret this as a clear demand for information and awareness-building campaigns for car drivers, as well as for technical cyber-security and privacy measures that are truly considerate of the human factor.
Technology has evolved over the years, making our lives easier. It has impacted the healthcare sector, increasing the average life expectancy of human beings. Still, there are gaps that remain unaddressed. There is a lack of transparency in the healthcare system, which results in inherent trust problems between patients and hospitals. In the present day, a patient does not know whether he or she will get the proper treatment from the hospital for the fee charged. A patient can claim reimbursement of the medical bill from any insurance company. However, today there is minimal scope for the Insurance Company to verify the validity of such bills or medical records. A patient can provide fake details to get financial benefits from the insurance company. Again, there are trust issues between the patient (i.e., the insurance claimer) and the insurance company. Blockchain integrated with the smart contract is a well-known disruptive technology that builds trust by providing transparency to the system. In this paper, we propose a blockchain-enabled Secure and Smart HealthCare System. Fairness of all the entities: patient, hospital, or insurance company involved in the system is guaranteed with no one trusting each other. Privacy and security of patients' medical data are ensured as well. We also propose a method for privacy-preserving sharing of aggregated data with the research community for their own purpose. Shared data must not be personally identifiable, i.e, no one can link the acquired data to the identity of any patient or their medical history. We have implemented the prototype in the Ethereum platform and Ropsten test network, and have included the analysis as well.
The rapid development in Internet of Medical Things (IoMT) boosts the opportunity for real-time health monitoring using various data types such as electroencephalography (EEG) and electrocardiography (ECG). Security issues have significantly impeded the e-healthcare system implementation. Three important challenges for privacy preserving system need to be addressed: accurate matching, privacy enhancement without compromising security, and computation efficiency. It is essential to guarantee prediction accuracy since disease diagnosis is strongly related to health and life. In this paper, we propose efficient disease prediction that guarantees security against malicious clients and honest-but-curious server using matrix encryption technique. A biomedical signal provided by the client is diagnosed such that the server does not get any information about the signal as well as the final result of the diagnosis while the client does not learn any information about the server's medical data. Thorough security analysis illustrates the disclosure resilience of the proposed scheme and the encryption algorithm satisfies local differential privacy. After result decryption performed by the client's device, performance is not degraded to perform prediction on encrypted data. The proposed scheme is efficient to implement real-time health monitoring.
With the emergence and fast development of trigger-action platforms in IoT settings, security vulnerabilities caused by the interactions among IoT devices become more prevalent. The event occurrence at one device triggers an action in another device, which may eventually contribute to the creation of a chain of events in a network. Adversaries exploit the chain effect to compromise IoT devices and trigger actions of interest remotely just by injecting malicious events into the chain. To address security vulnerabilities caused by trigger-action scenarios, existing research efforts focus on the validation of the security properties of devices or verification of the occurrence of certain events based on their physical fingerprints on a device. We propose IoTMonitor, a security analysis system that discerns the underlying chain of event occurrences with the highest probability by observing a chain of physical evidence collected by sensors. We use the Baum-Welch algorithm to estimate transition and emission probabilities and the Viterbi algorithm to discern the event sequence. We can then identify the crucial nodes in the trigger-action sequence whose compromise allows attackers to reach their final goals. The experiment results of our designed system upon the PEEVES datasets show that we can rebuild the event occurrence sequence with high accuracy from the observations and identify the crucial nodes on the attack paths.
Machine learning (ML) has become prominent in applications that directly affect people's quality of life, including in healthcare, justice, and finance. ML models have been found to exhibit discrimination based on sensitive attributes such as gender, race, or disability. Assessing if an ML model is free of bias remains challenging to date, and by definition has to be done with sensitive user characteristics that are subject of anti-discrimination and data protection law. Existing libraries for fairness auditing of ML models offer no mechanism to protect the privacy of the audit data. We present PrivFair, a library for privacy-preserving fairness audits of ML models. Through the use of Secure Multiparty Computation (MPC), PrivFair protects the confidentiality of the model under audit and the sensitive data used for the audit, hence it supports scenarios in which a proprietary classifier owned by a company is audited using sensitive audit data from an external investigator. We demonstrate the use of PrivFair for group fairness auditing with tabular data or image data, without requiring the investigator to disclose their data to anyone in an unencrypted manner, or the model owner to reveal their model parameters to anyone in plaintext.
The virtual dimension called `Cyberspace' built on internet technologies has served people's daily lives for decades. Now it offers advanced services and connected experiences with the developing pervasive computing technologies that digitise, collect, and analyse users' activity data. This changes how user information gets collected and impacts user privacy at traditional cyberspace gateways, including the devices carried by users for daily use. This work investigates the impacts and surveys privacy concerns caused by this data collection, namely identity tracking from browsing activities, user input data disclosure, data accessibility in mobile devices, security of delicate data transmission, privacy in participating sensing, and identity privacy in opportunistic networks. Each of the surveyed privacy concerns is discussed in a well-defined scope according to the impacts mentioned above. Existing countermeasures are also surveyed and discussed, which identifies corresponding research gaps. To complete the perspectives, three complex open problems, namely trajectory privacy, privacy in smart metering, and involuntary privacy leakage with ambient intelligence, are briefly discussed for future research directions before a succinct conclusion to our survey at the end.
In the present work we tackle the problem of finding the optimal price tariff to be set by a risk-averse electric retailer participating in the pool and whose customers are price-sensitive. We assume that the retailer has access to a sufficiently large smart-meter dataset from which it can statistically characterize the relationship between the tariff price and the demand load of its clients. Three different models are analyzed to predict the aggregated load as a function of the electricity prices and other parameters, as humidity or temperature. More specifically, we train linear regression (predictive) models to forecast the resulting demand load as a function of the retail price. Then we will insert this model in a quadratic optimization problem which evaluates the optimal price to be offered. This optimization problem accounts for different sources of uncertainty including consumer's response, pool prices and renewable source availability, and relies on a stochastic and risk-averse formulation. In particular, one important contribution of this work is to base the scenario generation and reduction procedure on the statistical properties of the resulting predictive model. This allows us to properly quantify (data-driven) not only the expected value but the level of uncertainty associated with the main problem parameters. Moreover, we consider both standard forward based contracts and the recently introduced power purchase agreement contracts as risk-hedging tools for the retailer. The results are promising as profits are found for the retailer with highly competitive prices and some possible improvements are shown if richer datasets could be available in the future. A realistic case study and multiple sensitivity analyses have been performed to characterize the risk-aversion behavior of the retailer considering price-sensitive consumers.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
Concepts embody the knowledge of the world and facilitate the cognitive processes of human beings. Mining concepts from web documents and constructing the corresponding taxonomy are core research problems in text understanding and support many downstream tasks such as query analysis, knowledge base construction, recommendation, and search. However, we argue that most prior studies extract formal and overly general concepts from Wikipedia or static web pages, which are not representing the user perspective. In this paper, we describe our experience of implementing and deploying ConcepT in Tencent QQ Browser. It discovers user-centered concepts at the right granularity conforming to user interests, by mining a large amount of user queries and interactive search click logs. The extracted concepts have the proper granularity, are consistent with user language styles and are dynamically updated. We further present our techniques to tag documents with user-centered concepts and to construct a topic-concept-instance taxonomy, which has helped to improve search as well as news feeds recommendation in Tencent QQ Browser. We performed extensive offline evaluation to demonstrate that our approach could extract concepts of higher quality compared to several other existing methods. Our system has been deployed in Tencent QQ Browser. Results from online A/B testing involving a large number of real users suggest that the Impression Efficiency of feeds users increased by 6.01% after incorporating the user-centered concepts into the recommendation framework of Tencent QQ Browser.
Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.
Conversational systems have come a long way since their inception in the 1960s. After decades of research and development, we've seen progress from Eliza and Parry in the 60's and 70's, to task-completion systems as in the DARPA Communicator program in the 2000s, to intelligent personal assistants such as Siri in the 2010s, to today's social chatbots like XiaoIce. Social chatbots' appeal lies not only in their ability to respond to users' diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying users' need for communication, affection, as well as social belonging. To further the advancement and adoption of social chatbots, their design must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with a social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual awareness to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, we have a responsibility to design social chatbots to be both useful and empathetic, so they will become ubiquitous and help society as a whole.