亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The validation of global climate models plays a crucial role in ensuring the accuracy of climatological predictions. However, existing statistical methods for evaluating differences between climate fields often overlook time misalignment and therefore fail to distinguish between sources of variability. To more comprehensively measure differences between climate fields, we introduce a new vector-valued metric, the sliced elastic distance. This new metric simultaneously accounts for spatial and temporal variability while decomposing the total distance into shape differences (amplitude), timing variability (phase), and bias (translation). We compare the sliced elastic distance against a classical metric and a newly developed Wasserstein-based approach through a simulation study. Our results demonstrate that the sliced elastic distance outperforms previous methods by capturing a broader range of features. We then apply our metric to evaluate the historical model outputs of the Coupled Model Intercomparison Project (CMIP) members, focusing on monthly average surface temperatures and monthly total precipitation. By comparing these model outputs with quasi-observational ERA5 Reanalysis data products, we rank the CMIP models and assess their performance. Additionally, we investigate the progression from CMIP phase 5 to phase 6 and find modest improvements in the phase 6 models regarding their ability to produce realistic climate dynamics.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · tuning · MoDELS · 可約的 · 麻省理工學院 ·
2024 年 3 月 8 日

Recent advancements in large-scale models have showcased remarkable generalization capabilities in various tasks. However, integrating multimodal processing into these models presents a significant challenge, as it often comes with a high computational burden. To address this challenge, we introduce a new parameter-efficient multimodal tuning strategy for large models in this paper, referred to as Multimodal Infusion Tuning (MiT). MiT leverages decoupled self-attention mechanisms within large language models to effectively integrate information from diverse modalities such as images and acoustics. In MiT, we also design a novel adaptive rescaling strategy at the head level, which optimizes the representation of infused multimodal features. Notably, all foundation models are kept frozen during the tuning process to reduce the computational burden(only 2.5\% parameters are tunable). We conduct experiments across a range of multimodal tasks, including image-related tasks like referring segmentation and non-image tasks such as sentiment analysis. Our results showcase that MiT achieves state-of-the-art performance in multimodal understanding while significantly reducing computational overhead(10\% of previous methods). Moreover, our tuned model exhibits robust reasoning abilities even in complex scenarios.

Symmetry is a fundamental aspect of many real-world robotic tasks. However, current deep reinforcement learning (DRL) approaches can seldom harness and exploit symmetry effectively. Often, the learned behaviors fail to achieve the desired transformation invariances and suffer from motion artifacts. For instance, a quadruped may exhibit different gaits when commanded to move forward or backward, even though it is symmetrical about its torso. This issue becomes further pronounced in high-dimensional or complex environments, where DRL methods are prone to local optima and fail to explore regions of the state space equally. Past methods on encouraging symmetry for robotic tasks have studied this topic mainly in a single-task setting, where symmetry usually refers to symmetry in the motion, such as the gait patterns. In this paper, we revisit this topic for goal-conditioned tasks in robotics, where symmetry lies mainly in task execution and not necessarily in the learned motions themselves. In particular, we investigate two approaches to incorporate symmetry invariance into DRL -- data augmentation and mirror loss function. We provide a theoretical foundation for using augmented samples in an on-policy setting. Based on this, we show that the corresponding approach achieves faster convergence and improves the learned behaviors in various challenging robotic tasks, from climbing boxes with a quadruped to dexterous manipulation.

Federated Recommendation (FR) emerges as a novel paradigm that enables privacy-preserving recommendations. However, traditional FR systems usually represent users/items with discrete identities (IDs), suffering from performance degradation due to the data sparsity and heterogeneity in FR. On the other hand, Large Language Models (LLMs) as recommenders have proven effective across various recommendation scenarios. Yet, LLM-based recommenders encounter challenges such as low inference efficiency and potential hallucination, compromising their performance in real-world scenarios. To this end, we propose GPT-FedRec, a federated recommendation framework leveraging ChatGPT and a novel hybrid Retrieval Augmented Generation (RAG) mechanism. GPT-FedRec is a two-stage solution. The first stage is a hybrid retrieval process, mining ID-based user patterns and text-based item features. Next, the retrieved results are converted into text prompts and fed into GPT for re-ranking. Our proposed hybrid retrieval mechanism and LLM-based re-rank aims to extract generalized features from data and exploit pretrained knowledge within LLM, overcoming data sparsity and heterogeneity in FR. In addition, the RAG approach also prevents LLM hallucination, improving the recommendation performance for real-world users. Experimental results on diverse benchmark datasets demonstrate the superior performance of GPT-FedRec against state-of-the-art baseline methods.

This work presents a novel Learning Model Predictive Control (LMPC) strategy for autonomous racing at the handling limit that can iteratively explore and learn unknown dynamics in high-speed operational domains. We start from existing LMPC formulations and modify the system dynamics learning method. In particular, our approach uses a nominal, global, nonlinear, physics-based model with a local, linear, data-driven learning of the error dynamics. We conducted experiments in simulation and on 1/10th scale hardware, and deployed the proposed LMPC on a full-scale autonomous race car used in the Indy Autonomous Challenge (IAC) with closed loop experiments at the Putnam Park Road Course in Indiana, USA. The results show that the proposed control policy exhibits improved robustness to parameter tuning and data scarcity. Incremental and safety-aware exploration toward the limit of handling and iterative learning of the vehicle dynamics in high-speed domains is observed both in simulations and experiments.

Adversarial attacks on Latent Diffusion Model (LDM), the state-of-the-art image generative model, have been adopted as effective protection against malicious finetuning of LDM on unauthorized images. We show that these attacks add an extra error to the score function of adversarial examples predicted by LDM. LDM finetuned on these adversarial examples learns to lower the error by a bias, from which the model is attacked and predicts the score function with biases. Based on the dynamics, we propose to improve the adversarial attack on LDM by Attacking with Consistent score-function Errors (ACE). ACE unifies the pattern of the extra error added to the predicted score function. This induces the finetuned LDM to learn the same pattern as a bias in predicting the score function. We then introduce a well-crafted pattern to improve the attack. Our method outperforms state-of-the-art methods in adversarial attacks on LDM.

Topic modelling was mostly dominated by Bayesian graphical models during the last decade. With the rise of transformers in Natural Language Processing, however, several successful models that rely on straightforward clustering approaches in transformer-based embedding spaces have emerged and consolidated the notion of topics as clusters of embedding vectors. We propose the Transformer-Representation Neural Topic Model (TNTM), which combines the benefits of topic representations in transformer-based embedding spaces and probabilistic modelling. Therefore, this approach unifies the powerful and versatile notion of topics based on transformer embeddings with fully probabilistic modelling, as in models such as Latent Dirichlet Allocation (LDA). We utilize the variational autoencoder (VAE) framework for improved inference speed and modelling flexibility. Experimental results show that our proposed model achieves results on par with various state-of-the-art approaches in terms of embedding coherence while maintaining almost perfect topic diversity. The corresponding source code is available at //github.com/ArikReuter/TNTM.

In the rapidly evolving landscape of 5G and beyond 5G (B5G) mobile cellular communications, efficient data compression and reconstruction strategies become paramount, especially in massive multiple-input multiple-output (MIMO) systems. A critical challenge in these systems is the capacity-limited fronthaul, particularly in the context of the Ethernet-based common public radio interface (eCPRI) connecting baseband units (BBUs) and remote radio units (RRUs). This capacity limitation hinders the effective handling of increased traffic and data flows. We propose a novel two-stage compression approach to address this bottleneck. The first stage employs sparse Tucker decomposition, targeting the weight tensor's low-rank components for compression. The second stage further compresses these components using complex givens decomposition and run-length encoding, substantially improving the compression ratio. Our approach specifically targets the Zero-Forcing (ZF) beamforming weights in BBUs. By reconstructing these weights in RRUs, we significantly alleviate the burden on eCPRI traffic, enabling a higher number of concurrent streams in the radio access network (RAN). Through comprehensive evaluations, we demonstrate the superior effectiveness of our method in Channel State Information (CSI) compression, paving the way for more efficient 5G/B5G fronthaul links.

This study designs an adaptive experiment for efficiently estimating average treatment effect (ATEs). We consider an adaptive experiment where an experimenter sequentially samples an experimental unit from a covariate density decided by the experimenter and assigns a treatment. After assigning a treatment, the experimenter observes the corresponding outcome immediately. At the end of the experiment, the experimenter estimates an ATE using gathered samples. The objective of the experimenter is to estimate the ATE with a smaller asymptotic variance. Existing studies have designed experiments that adaptively optimize the propensity score (treatment-assignment probability). As a generalization of such an approach, we propose a framework under which an experimenter optimizes the covariate density, as well as the propensity score, and find that optimizing both covariate density and propensity score reduces the asymptotic variance more than optimizing only the propensity score. Based on this idea, in each round of our experiment, the experimenter optimizes the covariate density and propensity score based on past observations. To design an adaptive experiment, we first derive the efficient covariate density and propensity score that minimizes the semiparametric efficiency bound, a lower bound for the asymptotic variance given a fixed covariate density and a fixed propensity score. Next, we design an adaptive experiment using the efficient covariate density and propensity score sequentially estimated during the experiment. Lastly, we propose an ATE estimator whose asymptotic variance aligns with the minimized semiparametric efficiency bound.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司