亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Randomized experiments often need to be stopped prematurely due to the treatment having an unintended harmful effect. Existing methods that determine when to stop an experiment early are typically applied to the data in aggregate and do not account for treatment effect heterogeneity. In this paper, we study the early stopping of experiments for harm on heterogeneous populations. We first establish that current methods often fail to stop experiments when the treatment harms a minority group of participants. We then use causal machine learning to develop CLASH, the first broadly-applicable method for heterogeneous early stopping. We demonstrate CLASH's performance on simulated and real data and show that it yields effective early stopping for both clinical trials and A/B tests.

相關內容

Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.

Distributed stochastic optimization has drawn great attention recently due to its effectiveness in solving large-scale machine learning problems. Though numerous algorithms have been proposed and successfully applied to general practical problems, their theoretical guarantees mainly rely on certain boundedness conditions on the stochastic gradients, varying from uniform boundedness to the relaxed growth condition. In addition, how to characterize the data heterogeneity among the agents and its impacts on the algorithmic performance remains challenging. In light of such motivations, we revisit the classical Federated Averaging (FedAvg) algorithm (McMahan et al., 2017) as well as the more recent SCAFFOLD method (Karimireddy et al., 2020) for solving the distributed stochastic optimization problem and establish the convergence results under only a mild variance condition on the stochastic gradients for smooth nonconvex objective functions. Almost sure convergence to a stationary point is also established under the condition. Moreover, we discuss a more informative measurement for data heterogeneity as well as its implications.

Evolutionary multitasking (EMT) has been attracting much attention over the past years. It aims to handle multiple optimization tasks simultaneously within limited computing resources assisted by inter-task knowledge transfer techniques. Numerous multitask evolutionary algorithms (MTEAs) for solving multitask optimization (MTO) problems have been proposed in the EMT field, but there lacks a comprehensive software platform to help researchers evaluate MTEA performance on benchmark MTO problems as well as explore real-world applications. To address this issue, we introduce the first open-source optimization platform, named MTO-Platform (MToP), for EMT. It incorporates more than 30 MTEAs, more than 150 MTO problem cases with real-world applications, and more than 10 performance metrics. Moreover, for comparing MTEAs with traditional evolutionary algorithms, we modified more than 30 popular single-task evolutionary algorithms to be able to solve MTO problems in MToP. MToP is a user-friendly tool with a graphical user interface that makes it easy to analyze results, export data, and plot schematics. More importantly, MToP is extensible, allowing users to develop new algorithms and define new problems. The source code of MToP is available at //github.com/intLyc/MTO-Platform.

Diffusion models have gained significant attention in the realm of image generation due to their exceptional performance. Their success has been recently expanded to text generation via generating all tokens within a sequence concurrently. However, natural language exhibits a far more pronounced sequential dependency in comparison to images, and the majority of existing language models are trained with a left-to-right auto-regressive approach. To account for the inherent sequential characteristic of natural language, we introduce Auto-Regressive Diffusion (AR-Diffusion). AR-Diffusion ensures that the generation of tokens on the right depends on the generated ones on the left, a mechanism achieved through employing a dynamic number of denoising steps that vary based on token position. This results in tokens on the left undergoing fewer denoising steps than those on the right, thereby enabling them to generate earlier and subsequently influence the generation of tokens on the right. In a series of experiments on various text generation tasks, including text summarization, machine translation, and common sense generation, AR-Diffusion clearly demonstrated its superiority over existing diffusion language models and that it can be $100\times\sim600\times$ faster when achieving comparable results. Our code is available at //github.com/microsoft/ProphetNet/tree/master/AR-diffusion.

Privacy-preserving distributed average consensus has received significant attention recently due to its wide applicability. Based on the achieved performances, existing approaches can be broadly classified into perfect accuracy-prioritized approaches such as secure multiparty computation (SMPC), and worst-case privacy-prioritized approaches such as differential privacy (DP). Methods of the first class achieve perfect output accuracy but reveal some private information, while methods from the second class provide privacy against the strongest adversary at the cost of a loss of accuracy. In this paper, we propose a general approach named adaptive differentially quantized subspace perturbation (ADQSP) which combines quantization schemes with so-called subspace perturbation. Although not relying on cryptographic primitives, the proposed approach enjoys the benefits of both accuracy-prioritized and privacy-prioritized methods and is able to unify them. More specifically, we show that by varying a single quantization parameter the proposed method can vary between SMPC-type performances and DP-type performances. Our results show the potential of exploiting traditional distributed signal processing tools for providing cryptographic guarantees. In addition to a comprehensive theoretical analysis, numerical validations are conducted to substantiate our results.

Provable nonlinear stability bounds the discrete approximation and ensures that the discretization does not diverge. For high-order methods, discrete nonlinear stability and entropy stability, have been successfully implemented for discontinuous Galerkin (DG) and residual distribution schemes, where the stability proofs depend on properties of L2-norms. In this paper, nonlinearly stable flux reconstruction (NSFR) schemes are developed for three-dimensional compressible flow in curvilinear coordinates. NSFR is derived by merging the energy stable FR (ESFR) framework with entropy stable DG schemes. NSFR is demonstrated to use larger time-steps than DG due to the ESFR correction functions. NSFR differs from ESFR schemes in the literature since it incorporates the FR correction functions on the volume terms through the use of a modified mass matrix. We also prove that discrete kinetic energy stability cannot be preserved to machine precision for quadrature rules where the surface quadrature is not a subset of the volume quadrature. This paper also presents the NSFR modified mass matrix in a weight-adjusted form. This form reduces the computational cost in curvilinear coordinates through sum-fcatorization and low-storage techniques. The nonlinear stability properties of the scheme are verified on a nonsymmetric curvilinear grid for the inviscid Taylor-Green vortex problem and the correct orders of convergence were obtained for a manufactured solution. Lastly, we perform a computational cost comparison between conservative DG, overintegrated DG, and our proposed entropy conserving NSFR scheme, and find that our proposed entropy conserving NSFR scheme is computationally competitive with the conservative DG scheme.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Substantial efforts have been devoted more recently to presenting various methods for object detection in optical remote sensing images. However, the current survey of datasets and deep learning based methods for object detection in optical remote sensing images is not adequate. Moreover, most of the existing datasets have some shortcomings, for example, the numbers of images and object categories are small scale, and the image diversity and variations are insufficient. These limitations greatly affect the development of deep learning based object detection methods. In the paper, we provide a comprehensive review of the recent deep learning based object detection progress in both the computer vision and earth observation communities. Then, we propose a large-scale, publicly available benchmark for object DetectIon in Optical Remote sensing images, which we name as DIOR. The dataset contains 23463 images and 192472 instances, covering 20 object classes. The proposed DIOR dataset 1) is large-scale on the object categories, on the object instance number, and on the total image number; 2) has a large range of object size variations, not only in terms of spatial resolutions, but also in the aspect of inter- and intra-class size variability across objects; 3) holds big variations as the images are obtained with different imaging conditions, weathers, seasons, and image quality; and 4) has high inter-class similarity and intra-class diversity. The proposed benchmark can help the researchers to develop and validate their data-driven methods. Finally, we evaluate several state-of-the-art approaches on our DIOR dataset to establish a baseline for future research.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司