亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent works in neural knowledge graph inference attempt to combine logic rules with knowledge graph embeddings to benefit from prior knowledge. However, they usually cannot avoid rule grounding, and injecting a diverse set of rules has still not been thoroughly explored. In this work, we propose InjEx, a mechanism to inject multiple types of rules through simple constraints, which capture definite Horn rules. To start, we theoretically prove that InjEx can inject such rules. Next, to demonstrate that InjEx infuses interpretable prior knowledge into the embedding space, we evaluate InjEx on both the knowledge graph completion (KGC) and few-shot knowledge graph completion (FKGC) settings. Our experimental results reveal that InjEx outperforms both baseline KGC models as well as specialized few-shot models while maintaining its scalability and efficiency.

相關內容

通過學習、實踐或探索所獲得的認識、判斷或技能。

This paper presents the geometric aspect of the autoencoder framework, which, despite its importance, has been relatively less recognized. Given a set of high-dimensional data points that approximately lie on some lower-dimensional manifold, an autoencoder learns the \textit{manifold} and its \textit{coordinate chart}, simultaneously. This geometric perspective naturally raises inquiries like "Does a finite set of data points correspond to a single manifold?" or "Is there only one coordinate chart that can represent the manifold?". The responses to these questions are negative, implying that there are multiple solution autoencoders given a dataset. Consequently, they sometimes produce incorrect manifolds with severely distorted latent space representations. In this paper, we introduce recent geometric approaches that address these issues.

We present a novel method for initializing layers of tensorized neural networks in a way that avoids the explosion of the parameters of the matrix it emulates. The method is intended for layers with a high number of nodes in which there is a connection to the input or output of all or most of the nodes. The core of this method is the use of the Frobenius norm of this layer in an iterative partial form, so that it has to be finite and within a certain range. This norm is efficient to compute, fully or partially for most cases of interest. We apply the method to different layers and check its performance. We create a Python function to run it on an arbitrary layer, available in a Jupyter Notebook in the i3BQuantum repository: //github.com/i3BQuantumTeam/Q4Real/blob/e07c827651ef16bcf74590ab965ea3985143f891/Quantum-Inspired%20Variational%20Methods/Normalization_process.ipynb

Despite their ubiquity, authoring dashboards for metrics reporting in modern data analysis tools remains a manual, time-consuming process. Rather than focusing on interesting combinations of their data, users have to spend time creating each chart in a dashboard one by one. This makes dashboard creation slow and tedious. We conducted a review of production metrics dashboards and found that many dashboards contain a common structure: breaking down one or more metrics by different dimensions. In response, we developed a high-level specification for describing dashboards as sections of metrics repeated across the same dimensions and a graphical interface, Quick Dashboard, for authoring dashboards based on this specification. We present several usage examples that demonstrate the flexibility of this specification to create various kinds of dashboards and support a data-first approach to dashboard authoring.

Quantum based systems are a relatively new research area for that different modelling languages including process calculi are currently under development. Encodings are often used to compare process calculi. Quality criteria are used then to rule out trivial or meaningless encodings. In this new context of quantum based systems, it is necessary to analyse the applicability of these quality criteria and to potentially extend or adapt them. As a first step, we test the suitability of classical criteria for encodings between quantum based languages and discuss new criteria. Concretely, we present an encoding, from a language inspired by CQP into a language inspired by qCCS. We show that this encoding satisfies compositionality, name invariance (for channel and qubit names), operational correspondence, divergence reflection, success sensitiveness, and that it preserves the size of quantum registers. Then we show that there is no encoding from qCCS into CQP that is compositional, operationally corresponding, and success sensitive.

Conventional automatic evaluation metrics, such as BLEU and ROUGE, developed for natural language generation (NLG) tasks, are based on measuring the n-gram overlap between the generated and reference text. These simple metrics may be insufficient for more complex tasks, such as question generation (QG), which requires generating questions that are answerable by the reference answers. Developing a more sophisticated automatic evaluation metric, thus, remains as an urgent problem in QG research. This work proposes a Prompting-based Metric on ANswerability (PMAN), a novel automatic evaluation metric to assess whether the generated questions are answerable by the reference answers for the QG tasks. Extensive experiments demonstrate that its evaluation results are reliable and align with human evaluations. We further apply our metric to evaluate the performance of QG models, which shows our metric complements conventional metrics. Our implementation of a ChatGPT-based QG model achieves state-of-the-art (SOTA) performance in generating answerable questions.

In the domain of scientific imaging, interpreting visual data often demands an intricate combination of human expertise and deep comprehension of the subject materials. This study presents a novel methodology to linguistically emulate and subsequently evaluate human-like interactions with Scanning Electron Microscopy (SEM) images, specifically of glass materials. Leveraging a multimodal deep learning framework, our approach distills insights from both textual and visual data harvested from peer-reviewed articles, further augmented by the capabilities of GPT-4 for refined data synthesis and evaluation. Despite inherent challenges--such as nuanced interpretations and the limited availability of specialized datasets--our model (GlassLLaVA) excels in crafting accurate interpretations, identifying key features, and detecting defects in previously unseen SEM images. Moreover, we introduce versatile evaluation metrics, suitable for an array of scientific imaging applications, which allows for benchmarking against research-grounded answers. Benefiting from the robustness of contemporary Large Language Models, our model adeptly aligns with insights from research papers. This advancement not only underscores considerable progress in bridging the gap between human and machine interpretation in scientific imaging, but also hints at expansive avenues for future research and broader application.

We study policy evaluation of offline contextual bandits subject to unobserved confounders. Sensitivity analysis methods are commonly used to estimate the policy value under the worst-case confounding over a given uncertainty set. However, existing work often resorts to some coarse relaxation of the uncertainty set for the sake of tractability, leading to overly conservative estimation of the policy value. In this paper, we propose a general estimator that provides a sharp lower bound of the policy value using convex programming. The generality of our estimator enables various extensions such as sensitivity analysis with f-divergence, model selection with cross validation and information criterion, and robust policy learning with the sharp lower bound. Furthermore, our estimation method can be reformulated as an empirical risk minimization problem thanks to the strong duality, which enables us to provide strong theoretical guarantees of the proposed estimator using techniques of the M-estimation.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司