亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We address the problem of modifying a given well-designed 2D sewing pattern to accommodate garment edits in the 3D space. Existing methods usually adjust the sewing pattern by applying uniform flattening to the 3D garment. The problems are twofold: first, it ignores local scaling of the 2D sewing pattern such as shrinking ribs of cuffs; second, it does not respect the implicit design rules and conventions of the industry, such as the use of straight edges for simplicity and precision in sewing. To address those problems, we present a pattern adjustment method that considers the non-uniform local scaling of the 2D sewing pattern by utilizing the intrinsic scale matrix. In addition, we preserve the original boundary shape by an as-similar-as-possible geometric constraint when desirable. We build a prototype with a set of commonly used alteration operations and showcase the capability of our method via a number of alteration examples throughout the paper.

相關內容

Estimating 3D hand mesh from RGB images is a longstanding track, in which occlusion is one of the most challenging problems. Existing attempts towards this task often fail when the occlusion dominates the image space. In this paper, we propose SiMA-Hand, aiming to boost the mesh reconstruction performance by Single-to-Multi-view Adaptation. First, we design a multi-view hand reconstructor to fuse information across multiple views by holistically adopting feature fusion at image, joint, and vertex levels. Then, we introduce a single-view hand reconstructor equipped with SiMA. Though taking only one view as input at inference, the shape and orientation features in the single-view reconstructor can be enriched by learning non-occluded knowledge from the extra views at training, enhancing the reconstruction precision on the occluded regions. We conduct experiments on the Dex-YCB and HanCo benchmarks with challenging object- and self-caused occlusion cases, manifesting that SiMA-Hand consistently achieves superior performance over the state of the arts. Code will be released on //github.com/JoyboyWang/SiMA-Hand Pytorch.

Leading models for the text-to-SQL task heavily rely on proprietary Large Language Models (LLMs), posing concerns over data privacy. Closing the performance gap between small open-source models and large proprietary models is crucial to mitigate this reliance. To this end, we introduce a novel two-stage fine-tuning approach that decomposes the task into two simpler tasks. Through comprehensive evaluation on two large cross-domain datasets and two small LLMs, we show that this approach improves execution accuracy by 3 to 7 percent, effectively aligning the performance of open-source models with their proprietary counterparts.

Attention mechanisms have been widely used to capture long-range dependencies among nodes in Graph Transformers. Bottlenecked by the quadratic computational cost, attention mechanisms fail to scale in large graphs. Recent improvements in computational efficiency are mainly achieved by attention sparsification with random or heuristic-based graph subsampling, which falls short in data-dependent context reasoning. State space models (SSMs), such as Mamba, have gained prominence for their effectiveness and efficiency in modeling long-range dependencies in sequential data. However, adapting SSMs to non-sequential graph data presents a notable challenge. In this work, we introduce Graph-Mamba, the first attempt to enhance long-range context modeling in graph networks by integrating a Mamba block with the input-dependent node selection mechanism. Specifically, we formulate graph-centric node prioritization and permutation strategies to enhance context-aware reasoning, leading to a substantial improvement in predictive performance. Extensive experiments on ten benchmark datasets demonstrate that Graph-Mamba outperforms state-of-the-art methods in long-range graph prediction tasks, with a fraction of the computational cost in both FLOPs and GPU memory consumption. The code and models are publicly available at //github.com/bowang-lab/Graph-Mamba.

We introduce AlphaRank, an artificial intelligence approach to address the fixed-budget ranking and selection (R&S) problems. We formulate the sequential sampling decision as a Markov decision process and propose a Monte Carlo simulation-based rollout policy that utilizes classic R&S procedures as base policies for efficiently learning the value function of stochastic dynamic programming. We accelerate online sample-allocation by using deep reinforcement learning to pre-train a neural network model offline based on a given prior. We also propose a parallelizable computing framework for large-scale problems, effectively combining "divide and conquer" and "recursion" for enhanced scalability and efficiency. Numerical experiments demonstrate that the performance of AlphaRank is significantly improved over the base policies, which could be attributed to AlphaRank's superior capability on the trade-off among mean, variance, and induced correlation overlooked by many existing policies.

Recently emerged prompt-based Recommendation Language Models (RLM) can solve multiple recommendation tasks uniformly. The RLMs make full use of the inherited knowledge learned from the abundant pre-training data to solve the downstream recommendation tasks by prompts, without introducing additional parameters or network training. However, handcrafted prompts require significant expertise and human effort since slightly rewriting prompts may cause massive performance changes. In this paper, we propose PAP-REC, a framework to generate the Personalized Automatic Prompt for RECommendation language models to mitigate the inefficiency and ineffectiveness problems derived from manually designed prompts. Specifically, personalized automatic prompts allow different users to have different prompt tokens for the same task, automatically generated using a gradient-based method. One challenge for personalized automatic prompt generation for recommendation language models is the extremely large search space, leading to a long convergence time. To effectively and efficiently address the problem, we develop surrogate metrics and leverage an alternative updating schedule for prompting recommendation language models. Experimental results show that our PAP-REC framework manages to generate personalized prompts, and the automatically generated prompts outperform manually constructed prompts and also outperform various baseline recommendation models. The source code of the work is available at //github.com/rutgerswiselab/PAP-REC.

We introduce ReplaceAnything3D model (RAM3D), a novel text-guided 3D scene editing method that enables the replacement of specific objects within a scene. Given multi-view images of a scene, a text prompt describing the object to replace, and a text prompt describing the new object, our Erase-and-Replace approach can effectively swap objects in the scene with newly generated content while maintaining 3D consistency across multiple viewpoints. We demonstrate the versatility of ReplaceAnything3D by applying it to various realistic 3D scenes, showcasing results of modified foreground objects that are well-integrated with the rest of the scene without affecting its overall integrity.

The Segment Anything Model (SAM) stands as a foundational framework for image segmentation. While it exhibits remarkable zero-shot generalization in typical scenarios, its advantage diminishes when applied to specialized domains like medical imagery and remote sensing. To address this limitation, this paper introduces Conv-LoRA, a simple yet effective parameter-efficient fine-tuning approach. By integrating ultra-lightweight convolutional parameters into Low-Rank Adaptation (LoRA), Conv-LoRA can inject image-related inductive biases into the plain ViT encoder, further reinforcing SAM's local prior assumption. Notably, Conv-LoRA not only preserves SAM's extensive segmentation knowledge but also revives its capacity of learning high-level image semantics, which is constrained by SAM's foreground-background segmentation pretraining. Comprehensive experimentation across diverse benchmarks spanning multiple domains underscores Conv-LoRA's superiority in adapting SAM to real-world semantic segmentation tasks.

Natural Language Processing (NLP) aims to analyze the text via techniques in the computer science field. It serves the applications in healthcare, commerce, and education domains. Particularly, NLP has been applied to the education domain to help teaching and learning. In this survey, we review recent advances in NLP with a focus on solving problems related to the education domain. In detail, we begin with introducing the relevant background. Then, we present the taxonomy of NLP in the education domain. Next, we illustrate the task definition, challenges, and corresponding techniques based on the above taxonomy. After that, we showcase some off-the-shelf demonstrations in this domain and conclude with future directions.

The advent of Large Models marks a new era in machine learning, significantly outperforming smaller models by leveraging vast datasets to capture and synthesize complex patterns. Despite these advancements, the exploration into scaling, especially in the audio generation domain, remains limited, with previous efforts didn't extend into the high-fidelity (HiFi) 44.1kHz domain and suffering from both spectral discontinuities and blurriness in the high-frequency domain, alongside a lack of robustness against out-of-domain data. These limitations restrict the applicability of models to diverse use cases, including music and singing generation. Our work introduces Enhanced Various Audio Generation via Scalable Generative Adversarial Networks (EVA-GAN), yields significant improvements over previous state-of-the-art in spectral and high-frequency reconstruction and robustness in out-of-domain data performance, enabling the generation of HiFi audios by employing an extensive dataset of 36,000 hours of 44.1kHz audio, a context-aware module, a Human-In-The-Loop artifact measurement toolkit, and expands the model to approximately 200 million parameters. Demonstrations of our work are available at //double-blind-eva-gan.cc.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

北京阿比特科技有限公司