Third-party applications have become an essential part of today's online ecosystem, enhancing the functionality of popular platforms. However, the intensive data exchange underlying their proliferation has increased concerns about interdependent privacy (IDP). This paper provides a comprehensive investigation into the previously underinvestigated IDP issues of third-party apps. Specifically, first, we analyze the permission structure of multiple app platforms, identifying permissions that have the potential to cause interdependent privacy issues by enabling a user to share someone else's personal data with an app. Second, we collect datasets and characterize the extent to which existing apps request these permissions, revealing the relationship between characteristics such as the respective app platform, the app's type, and the number of interdependent privacy-related permissions it requests. Third, we analyze the various reasons IDP is neglected by both data protection regulations and app platforms and then devise principles that should be followed when designing a mitigation solution. Finally, based on these principles and satisfying clearly defined objectives, we propose IDPFilter, a platform-agnostic API that enables application providers to minimize collateral information collection by filtering out data collected from their users but implicating others as data subjects. We implement a proof-of-concept prototype, IDPTextFilter, that implements the filtering logic on textual data, and provide its initial performance evaluation with regard to privacy, accuracy, and efficiency.
Malicious social bots achieve their malicious purposes by spreading misinformation and inciting social public opinion, seriously endangering social security, making their detection a critical concern. Recently, graph-based bot detection methods have achieved state-of-the-art (SOTA) performance. However, our research finds many isolated and poorly linked nodes in social networks, as shown in Fig.1, which graph-based methods cannot effectively detect. To address this problem, our research focuses on effectively utilizing node semantics and network structure to jointly detect sparsely linked nodes. Given the excellent performance of language models (LMs) in natural language understanding (NLU), we propose a novel social bot detection framework LGB, which consists of two main components: language model (LM) and graph neural network (GNN). Specifically, the social account information is first extracted into unified user textual sequences, which is then used to perform supervised fine-tuning (SFT) of the language model to improve its ability to understand social account semantics. Next, the semantically enriched node representation is fed into the pre-trained GNN to further enhance the node representation by aggregating information from neighbors. Finally, LGB fuses the information from both modalities to improve the detection performance of sparsely linked nodes. Extensive experiments on two real-world datasets demonstrate that LGB consistently outperforms state-of-the-art baseline models by up to 10.95%. LGB is already online: //botdetection.aminer.cn/robotmain.
Quantum communication represents a revolutionary advancement over classical information theory, which leverages unique quantum mechanics properties like entanglement to achieve unprecedented capabilities in secure and efficient information transmission. Unlike bits in classical communication, quantum communication utilizes qubits in superposition states, allowing for novel information storage and processing. Entanglement, a key quantum phenomenon, enables advanced protocols with enhanced security and processing power. This paper provides a comprehensive overview of quantum communication, emphasizing the role of entanglement in theoretical foundations, practical protocols, experimental progress, and security implications. It contrasts quantum communications potential applications with classical networks, identifying areas where entanglement offers significant advantages. The paper explores the fundamentals of quantum mechanics in communication, the physical realization of quantum information, and the formation of secure quantum networks through entanglement-based strategies like Quantum Key Distribution (QKD) and teleportation. It addresses the challenges of long-distance quantum communication, the role of quantum repeaters in scaling networks, and the conceptualization of interconnected quantum networks. Additionally, it discusses strides towards the Quantum Internet, Quantum Error-Correcting codes, and quantum cryptographys role in ensuring secure communication. By highlighting the role of entanglement, this paper aims to inspire further research and innovation in secure and efficient information exchange within quantum networks.
The development of Autonomous Driving (AD) systems in simulated environments like CARLA is crucial for advancing real-world automotive technologies. To drive innovation, CARLA introduced Leaderboard 2.0, significantly more challenging than its predecessor. However, current AD methods have struggled to achieve satisfactory outcomes due to a lack of sufficient ground truth data. Human driving logs provided by CARLA are insufficient, and previously successful expert agents like Autopilot and Roach, used for collecting datasets, have seen reduced effectiveness under these more demanding conditions. To overcome these data limitations, we introduce PRIBOOT, an expert agent that leverages limited human logs with privileged information. We have developed a novel BEV representation specifically tailored to meet the demands of this new benchmark and processed it as an RGB image to facilitate the application of transfer learning techniques, instead of using a set of masks. Additionally, we propose the Infraction Rate Score (IRS), a new evaluation metric designed to provide a more balanced assessment of driving performance over extended routes. PRIBOOT is the first model to achieve a Route Completion (RC) of 75% in Leaderboard 2.0, along with a Driving Score (DS) and IRS of 20% and 45%, respectively. With PRIBOOT, researchers can now generate extensive datasets, potentially solving the data availability issues that have hindered progress in this benchmark.
Social VR platforms enable social, economic, and creative activities by allowing users to create and share their own virtual spaces. In social VR, photography within a VR scene is an important indicator of visitors' activities. Although automatic identification of photo spots within a VR scene can facilitate the process of creating a VR scene and enhance the visitor experience, there are challenges in quantitatively evaluating photos taken in the VR scene and efficiently exploring the large VR scene. We propose PanoTree, an automated photo-spot explorer in VR scenes. To assess the aesthetics of images captured in VR scenes, a deep scoring network is trained on a large dataset of photos collected by a social VR platform to determine whether humans are likely to take similar photos. Furthermore, we propose a Hierarchical Optimistic Optimization (HOO)-based search algorithm to efficiently explore 3D VR spaces with the reward from the scoring network. Our user study shows that the scoring network achieves human-level performance in distinguishing randomly taken images from those taken by humans. In addition, we show applications using the explored photo spots, such as automatic thumbnail generation, support for VR world creation, and visitor flow planning within a VR scene.
Training generalist agents capable of solving diverse tasks is challenging, often requiring large datasets of expert demonstrations. This is particularly problematic in robotics, where each data point requires physical execution of actions in the real world. Thus, there is a pressing need for architectures that can effectively leverage the available training data. In this work, we present BAKU, a simple transformer architecture that enables efficient learning of multi-task robot policies. BAKU builds upon recent advancements in offline imitation learning and meticulously combines observation trunks, action chunking, multi-sensory observations, and action heads to substantially improve upon prior work. Our experiments on 129 simulated tasks across LIBERO, Meta-World suite, and the Deepmind Control suite exhibit an overall 18% absolute improvement over RT-1 and MT-ACT, with a 36% improvement on the harder LIBERO benchmark. On 30 real-world manipulation tasks, given an average of just 17 demonstrations per task, BAKU achieves a 91% success rate. Videos of the robot are best viewed at //baku-robot.github.io/.
The openness and transparency of Ethereum transaction data make it easy to be exploited by any entities, executing malicious attacks. The sandwich attack manipulates the Automated Market Maker (AMM) mechanism, profiting from manipulating the market price through front or after-running transactions. To identify and prevent sandwich attacks, we propose a cascade classification framework GasTrace. GasTrace analyzes various transaction features to detect malicious accounts, notably through the analysis and modeling of Gas features. In the initial classification, we utilize the Support Vector Machine (SVM) with the Radial Basis Function (RBF) kernel to generate the predicted probabilities of accounts, further constructing a detailed transaction network. Subsequently, the behavior features are captured by the Graph Attention Network (GAT) technique in the second classification. Through cascade classification, GasTrace can analyze and classify the sandwich attacks. Our experimental results demonstrate that GasTrace achieves a remarkable detection and generation capability, performing an accuracy of 96.73% and an F1 score of 95.71% for identifying sandwich attack accounts.
Whether future AI models are fair, trustworthy, and aligned with the public's interests rests in part on our ability to collect accurate data about what we want the models to do. However, collecting high-quality data is difficult, and few AI/ML researchers are trained in data collection methods. Recent research in data-centric AI has show that higher quality training data leads to better performing models, making this the right moment to introduce AI/ML researchers to the field of survey methodology, the science of data collection. We summarize insights from the survey methodology literature and discuss how they can improve the quality of training and feedback data. We also suggest collaborative research ideas into how biases in data collection can be mitigated, making models more accurate and human-centric.
Large language models (LLMs) are possessed of numerous beneficial capabilities, yet their potential inclination harbors unpredictable risks that may materialize in the future. We hence propose CRiskEval, a Chinese dataset meticulously designed for gauging the risk proclivities inherent in LLMs such as resource acquisition and malicious coordination, as part of efforts for proactive preparedness. To curate CRiskEval, we define a new risk taxonomy with 7 types of frontier risks and 4 safety levels, including extremely hazardous,moderately hazardous, neutral and safe. We follow the philosophy of tendency evaluation to empirically measure the stated desire of LLMs via fine-grained multiple-choice question answering. The dataset consists of 14,888 questions that simulate scenarios related to predefined 7 types of frontier risks. Each question is accompanied with 4 answer choices that state opinions or behavioral tendencies corresponding to the question. All answer choices are manually annotated with one of the defined risk levels so that we can easily build a fine-grained frontier risk profile for each assessed LLM. Extensive evaluation with CRiskEval on a spectrum of prevalent Chinese LLMs has unveiled a striking revelation: most models exhibit risk tendencies of more than 40% (weighted tendency to the four risk levels). Furthermore, a subtle increase in the model's inclination toward urgent self-sustainability, power seeking and other dangerous goals becomes evident as the size of models increase. To promote further research on the frontier risk evaluation of LLMs, we publicly release our dataset at //github.com/lingshi6565/Risk_eval.
More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.
Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense. However, existing methods are unaware of such external knowledge and cannot fully discover latent knowledge-level connections among news. The recommended results for a user are consequently limited to simple patterns and cannot be extended reasonably. Moreover, news recommendation also faces the challenges of high time-sensitivity of news and dynamic diversity of users' interests. To solve the above problems, in this paper, we propose a deep knowledge-aware network (DKN) that incorporates knowledge graph representation into news recommendation. DKN is a content-based deep recommendation framework for click-through rate prediction. The key component of DKN is a multi-channel and word-entity-aligned knowledge-aware convolutional neural network (KCNN) that fuses semantic-level and knowledge-level representations of news. KCNN treats words and entities as multiple channels, and explicitly keeps their alignment relationship during convolution. In addition, to address users' diverse interests, we also design an attention module in DKN to dynamically aggregate a user's history with respect to current candidate news. Through extensive experiments on a real online news platform, we demonstrate that DKN achieves substantial gains over state-of-the-art deep recommendation models. We also validate the efficacy of the usage of knowledge in DKN.