亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-task learning (MTL) is a learning paradigm that enables the simultaneous training of multiple communicating algorithms. Although MTL has been successfully applied to ether regression or classification tasks alone, incorporating mixed types of tasks into a unified MTL framework remains challenging, primarily due to variations in the magnitudes of losses associated with different tasks. This challenge, particularly evident in MTL applications with joint feature selection, often results in biased selections. To overcome this obstacle, we propose a provable loss weighting scheme that analytically determines the optimal weights for balancing regression and classification tasks. This scheme significantly mitigates the otherwise biased feature selection. Building upon this scheme, we introduce MTLComb, an MTL algorithm and software package encompassing optimization procedures, training protocols, and hyperparameter estimation procedures. MTLComb is designed for learning shared predictors among tasks of mixed types. To showcase the efficacy of MTLComb, we conduct tests on both simulated data and biomedical studies pertaining to sepsis and schizophrenia.

相關內容

多任務學習(MTL)是機器學習的一個子領域,可以同時解決多個學習任務,同時利用各個任務之間的共性和差異。與單獨訓練模型相比,這可以提高特定任務模型的學習效率和預測準確性。多任務學習是歸納傳遞的一種方法,它通過將相關任務的訓練信號中包含的域信息用作歸納偏差來提高泛化能力。通過使用共享表示形式并行學習任務來實現,每個任務所學的知識可以幫助更好地學習其它任務。

Understanding the mechanisms through which neural networks extract statistics from input-label pairs through feature learning is one of the most important unsolved problems in supervised learning. Prior works demonstrated that the gram matrices of the weights (the neural feature matrices, NFM) and the average gradient outer products (AGOP) become correlated during training, in a statement known as the neural feature ansatz (NFA). Through the NFA, the authors introduce mapping with the AGOP as a general mechanism for neural feature learning. However, these works do not provide a theoretical explanation for this correlation or its origins. In this work, we further clarify the nature of this correlation, and explain its emergence. We show that this correlation is equivalent to alignment between the left singular structure of the weight matrices and the newly defined pre-activation tangent features at each layer. We further establish that the alignment is driven by the interaction of weight changes induced by SGD with the pre-activation features, and analyze the resulting dynamics analytically at early times in terms of simple statistics of the inputs and labels. Finally, motivated by the observation that the NFA is driven by this centered correlation, we introduce a simple optimization rule that dramatically increases the NFA correlations at any given layer and improves the quality of features learned.

It is known that the standard stochastic gradient descent (SGD) optimization method, as well as accelerated and adaptive SGD optimization methods such as the Adam optimizer fail to converge if the learning rates do not converge to zero (as, for example, in the situation of constant learning rates). Numerical simulations often use human-tuned deterministic learning rate schedules or small constant learning rates. The default learning rate schedules for SGD optimization methods in machine learning implementation frameworks such as TensorFlow and Pytorch are constant learning rates. In this work we propose and study a learning-rate-adaptive approach for SGD optimization methods in which the learning rate is adjusted based on empirical estimates for the values of the objective function of the considered optimization problem (the function that one intends to minimize). In particular, we propose a learning-rate-adaptive variant of the Adam optimizer and implement it in case of several neural network learning problems, particularly, in the context of deep learning approximation methods for partial differential equations such as deep Kolmogorov methods, physics-informed neural networks, and deep Ritz methods. In each of the presented learning problems the proposed learning-rate-adaptive variant of the Adam optimizer faster reduces the value of the objective function than the Adam optimizer with the default learning rate. For a simple class of quadratic minimization problems we also rigorously prove that a learning-rate-adaptive variant of the SGD optimization method converges to the minimizer of the considered minimization problem. Our convergence proof is based on an analysis of the laws of invariant measures of the SGD method as well as on a more general convergence analysis for SGD with random but predictable learning rates which we develop in this work.

Generative diffusion models have achieved spectacular performance in many areas of machine learning and generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, variational inference and stochastic calculus, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We show that these phase-transitions are always in a mean-field universality class, as they are the result of a self-consistency condition in the generative dynamics. We argue that the critical instability that arises from the phase transitions lies at the heart of their generative capabilities, which are characterized by a set of mean-field critical exponents. Finally, we show that the dynamic equation of the generative process can be interpreted as a stochastic adiabatic transformation that minimizes the free energy while keeping the system in thermal equilibrium.

Continual learning refers to the capability of a machine learning model to learn and adapt to new information, without compromising its performance on previously learned tasks. Although several studies have investigated continual learning methods for information retrieval tasks, a well-defined task formulation is still lacking, and it is unclear how typical learning strategies perform in this context. To address this challenge, a systematic task formulation of continual neural information retrieval is presented, along with a multiple-topic dataset that simulates continuous information retrieval. A comprehensive continual neural information retrieval framework consisting of typical retrieval models and continual learning strategies is then proposed. Empirical evaluations illustrate that the proposed framework can successfully prevent catastrophic forgetting in neural information retrieval and enhance performance on previously learned tasks. The results indicate that embedding-based retrieval models experience a decline in their continual learning performance as the topic shift distance and dataset volume of new tasks increase. In contrast, pretraining-based models do not show any such correlation. Adopting suitable learning strategies can mitigate the effects of topic shift and data augmentation.

Reinforcement learning with human feedback (RLHF) has become the dominant method to align large models to user preferences. Unlike fine-tuning, for which there are many studies regarding training data memorization, it is not clear how memorization is affected by or introduced in the RLHF alignment process. Understanding this relationship is important as real user data may be collected and used to align large models; if user data is memorized during RLHF and later regurgitated, this could raise privacy concerns. In this work, we analyze how training data memorization can surface and propagate through each phase of RLHF. We focus our study on code completion models, as code completion is one of the most popular use cases for large language models. We find that RLHF significantly decreases the chance that data used for reward modeling and reinforcement learning is memorized, in comparison to aligning via directly fine-tuning on this data, but that examples already memorized during the fine-tuning stage of RLHF, will, in the majority of cases, remain memorized after RLHF.

Compressive learning is an emerging approach to drastically reduce the memory footprint of large-scale learning, by first summarizing a large dataset into a low-dimensional sketch vector, and then decoding from this sketch the latent information needed for learning. In light of recent progress on information preservation guarantees for sketches based on random features, a major objective is to design easy-to-tune algorithms (called decoders) to robustly and efficiently extract this information. To address the underlying non-convex optimization problems, various heuristics have been proposed. In the case of compressive clustering, the standard heuristic is CL-OMPR, a variant of sliding Frank-Wolfe. Yet, CL-OMPR is hard to tune, and the examination of its robustness was overlooked. In this work, we undertake a scrutinized examination of CL-OMPR to circumvent its limitations. In particular, we show how this algorithm can fail to recover the clusters even in advantageous scenarios. To gain insight, we show how the deficiencies of this algorithm can be attributed to optimization difficulties related to the structure of a correlation function appearing at core steps of the algorithm. To address these limitations, we propose an alternative decoder offering substantial improvements over CL-OMPR. Its design is notably inspired from the mean shift algorithm, a classic approach to detect the local maxima of kernel density estimators. The proposed algorithm can extract clustering information from a sketch of the MNIST dataset that is 10 times smaller than previously.

This dissertation studies a fundamental open challenge in deep learning theory: why do deep networks generalize well even while being overparameterized, unregularized and fitting the training data to zero error? In the first part of the thesis, we will empirically study how training deep networks via stochastic gradient descent implicitly controls the networks' capacity. Subsequently, to show how this leads to better generalization, we will derive {\em data-dependent} {\em uniform-convergence-based} generalization bounds with improved dependencies on the parameter count. Uniform convergence has in fact been the most widely used tool in deep learning literature, thanks to its simplicity and generality. Given its popularity, in this thesis, we will also take a step back to identify the fundamental limits of uniform convergence as a tool to explain generalization. In particular, we will show that in some example overparameterized settings, {\em any} uniform convergence bound will provide only a vacuous generalization bound. With this realization in mind, in the last part of the thesis, we will change course and introduce an {\em empirical} technique to estimate generalization using unlabeled data. Our technique does not rely on any notion of uniform-convergece-based complexity and is remarkably precise. We will theoretically show why our technique enjoys such precision. We will conclude by discussing how future work could explore novel ways to incorporate distributional assumptions in generalization bounds (such as in the form of unlabeled data) and explore other tools to derive bounds, perhaps by modifying uniform convergence or by developing completely new tools altogether.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Machine-learning models have demonstrated great success in learning complex patterns that enable them to make predictions about unobserved data. In addition to using models for prediction, the ability to interpret what a model has learned is receiving an increasing amount of attention. However, this increased focus has led to considerable confusion about the notion of interpretability. In particular, it is unclear how the wide array of proposed interpretation methods are related, and what common concepts can be used to evaluate them. We aim to address these concerns by defining interpretability in the context of machine learning and introducing the Predictive, Descriptive, Relevant (PDR) framework for discussing interpretations. The PDR framework provides three overarching desiderata for evaluation: predictive accuracy, descriptive accuracy and relevancy, with relevancy judged relative to a human audience. Moreover, to help manage the deluge of interpretation methods, we introduce a categorization of existing techniques into model-based and post-hoc categories, with sub-groups including sparsity, modularity and simulatability. To demonstrate how practitioners can use the PDR framework to evaluate and understand interpretations, we provide numerous real-world examples. These examples highlight the often under-appreciated role played by human audiences in discussions of interpretability. Finally, based on our framework, we discuss limitations of existing methods and directions for future work. We hope that this work will provide a common vocabulary that will make it easier for both practitioners and researchers to discuss and choose from the full range of interpretation methods.

北京阿比特科技有限公司