The development of large language models (LLMs) such as ChatGPT has brought a lot of attention recently. However, their evaluation in the benchmark academic datasets remains under-explored due to the difficulty of evaluating the generative outputs produced by this model against the ground truth. In this paper, we aim to present a thorough evaluation of ChatGPT's performance on diverse academic datasets, covering tasks like question-answering, text summarization, code generation, commonsense reasoning, mathematical problem-solving, machine translation, bias detection, and ethical considerations. Specifically, we evaluate ChatGPT across 140 tasks and analyze 255K responses it generates in these datasets. This makes our work the largest evaluation of ChatGPT in NLP benchmarks. In short, our study aims to validate the strengths and weaknesses of ChatGPT in various tasks and provide insights for future research using LLMs. We also report a new emergent ability to follow multi-query instructions that we mostly found in ChatGPT and other instruction-tuned models. Our extensive evaluation shows that even though ChatGPT is capable of performing a wide variety of tasks, and may obtain impressive performance in several benchmark datasets, it is still far from achieving the ability to reliably solve many challenging tasks. By providing a thorough assessment of ChatGPT's performance across diverse NLP tasks, this paper sets the stage for a targeted deployment of ChatGPT-like LLMs in real-world applications.
Recently, the development of pre-trained language models has brought natural language processing (NLP) tasks to the new state-of-the-art. In this paper we explore the efficiency of various pre-trained language models. We pre-train a list of transformer-based models with the same amount of text and the same training steps. The experimental results shows that the most improvement upon the origin BERT is adding the RNN-layer to capture more contextual information for short text understanding. But the conclusion is: There are no remarkable improvement for short text understanding for similar BERT structures. Data-centric method[12] can achieve better performance.
Large Language Models (LLMs) have demonstrated remarkable performance on various quantitative reasoning and knowledge benchmarks. However, many of these benchmarks are losing utility as LLMs get increasingly high scores, despite not yet reaching expert performance in these domains. We introduce ARB, a novel benchmark composed of advanced reasoning problems in multiple fields. ARB presents a more challenging test than prior benchmarks, featuring problems in mathematics, physics, biology, chemistry, and law. As a subset of ARB, we introduce a challenging set of math and physics problems which require advanced symbolic reasoning and domain knowledge. We evaluate recent models such as GPT-4 and Claude on ARB and demonstrate that current models score well below 50% on more demanding tasks. In order to improve both automatic and assisted evaluation capabilities, we introduce a rubric-based evaluation approach, allowing GPT-4 to score its own intermediate reasoning steps. Further, we conduct a human evaluation of the symbolic subset of ARB, finding promising agreement between annotators and GPT-4 rubric evaluation scores.
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks. Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect (hallucinated) information. Hence, aligning LLMs with human expectations has become an active area of interest within the research community. This survey presents a comprehensive overview of these alignment technologies, including the following aspects. (1) Data collection: the methods for effectively collecting high-quality instructions for LLM alignment, including the use of NLP benchmarks, human annotations, and leveraging strong LLMs. (2) Training methodologies: a detailed review of the prevailing training methods employed for LLM alignment. Our exploration encompasses Supervised Fine-tuning, both Online and Offline human preference training, along with parameter-efficient training mechanisms. (3) Model Evaluation: the methods for evaluating the effectiveness of these human-aligned LLMs, presenting a multifaceted approach towards their assessment. In conclusion, we collate and distill our findings, shedding light on several promising future research avenues in the field. This survey, therefore, serves as a valuable resource for anyone invested in understanding and advancing the alignment of LLMs to better suit human-oriented tasks and expectations. An associated GitHub link collecting the latest papers is available at //github.com/GaryYufei/AlignLLMHumanSurvey.
Remote Photoplethysmography (rPPG) is a technology that utilizes the light absorption properties of hemoglobin, captured via camera, to analyze and measure blood volume pulse (BVP). By analyzing the measured BVP, various physiological signals such as heart rate, stress levels, and blood pressure can be derived, enabling applications such as the early prediction of cardiovascular diseases. rPPG is a rapidly evolving field as it allows the measurement of vital signals using camera-equipped devices without the need for additional devices such as blood pressure monitors or pulse oximeters, and without the assistance of medical experts. Despite extensive efforts and advances in this field, serious challenges remain, including issues related to skin color, camera characteristics, ambient lighting, and other sources of noise, which degrade performance accuracy. We argue that fair and evaluable benchmarking is urgently required to overcome these challenges and make any meaningful progress from both academic and commercial perspectives. In most existing work, models are trained, tested, and validated only on limited datasets. Worse still, some studies lack available code or reproducibility, making it difficult to fairly evaluate and compare performance. Therefore, the purpose of this study is to provide a benchmarking framework to evaluate various rPPG techniques across a wide range of datasets for fair evaluation and comparison, including both conventional non-deep neural network (non-DNN) and deep neural network (DNN) methods. GitHub URL: //github.com/remotebiosensing/rppg.
In this paper, we study the problem of secret language in NLP, where current language models (LMs) seem to have a hidden vocabulary that allows them to interpret absurd inputs as meaningful concepts. We investigate two research questions: ``Does the secret language phenomenon exist in different language models?'' and ``Does secret language depend on specific context?'' To answer these questions, we introduce a novel method named \textit{SecretFinding}, a gradient-based approach that can automatically discover secret languages in LMs. We conduct experiments on five representative models (Electra, ALBERT, Roberta, DistillBERT, and CLIP) finetuned on four NLP benchmarks (SST-2, MRPC, SNLI, and SQuAD) and a language-grounding benchmark (MSCOCO). Our experimental results show that even when we replace the most important words with others that are semantically dissimilar to the original words in a sentence, LMs do not consider the new sentence semantically dissimilar to the original, as the output does not change with a high probability. This phenomenon holds true across the five models and five tasks and gives a positive answer to the first research question. As for the second research question, we find that the secret language discovered by \textit{SecretFinding} is quite general and could even be transferred to other models in the black-box settings, such as GPT-3 and ChatGPT. Finally, we discuss the causes of secret language, how to eliminate it, the potential connection to memorization, and ethical implications. Examples of secret language found by SecretFinding are available on //huggingface.co/spaces/anonymousauthors/ACL23_SecretLanguage.
ChatGPT, as a versatile large language model, has demonstrated remarkable potential in addressing inquiries across various domains. Its ability to analyze, comprehend, and synthesize information from both online sources and user inputs has garnered significant attention. Previous research has explored ChatGPT's competence in code generation and code reviews. In this paper, we delve into ChatGPT's capabilities in security-oriented program analysis, focusing on perspectives from both attackers and security analysts. We present a case study involving several security-oriented program analysis tasks while deliberately introducing challenges to assess ChatGPT's responses. Through an examination of the quality of answers provided by ChatGPT, we gain a clearer understanding of its strengths and limitations in the realm of security-oriented program analysis.
For nearly two decades, CAPTCHAs have been widely used as a means of protection against bots. Throughout the years, as their use grew, techniques to defeat or bypass CAPTCHAs have continued to improve. Meanwhile, CAPTCHAs have also evolved in terms of sophistication and diversity, becoming increasingly difficult to solve for both bots (machines) and humans. Given this long-standing and still-ongoing arms race, it is critical to investigate how long it takes legitimate users to solve modern CAPTCHAs, and how they are perceived by those users. In this work, we explore CAPTCHAs in the wild by evaluating users' solving performance and perceptions of unmodified currently-deployed CAPTCHAs. We obtain this data through manual inspection of popular websites and user studies in which 1,400 participants collectively solved 14,000 CAPTCHAs. Results show significant differences between the most popular types of CAPTCHAs: surprisingly, solving time and user perception are not always correlated. We performed a comparative study to investigate the effect of experimental context -- specifically the difference between solving CAPTCHAs directly versus solving them as part of a more natural task, such as account creation. Whilst there were several potential confounding factors, our results show that experimental context could have an impact on this task, and must be taken into account in future CAPTCHA studies. Finally, we investigate CAPTCHA-induced user task abandonment by analyzing participants who start and do not complete the task.
Modeling discourse -- the linguistic phenomena that go beyond individual sentences, is a fundamental yet challenging aspect of natural language processing (NLP). However, existing evaluation benchmarks primarily focus on the evaluation of inter-sentence properties and overlook critical discourse phenomena that cross sentences. To bridge the gap, we propose Disco-Bench, a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks, covering understanding, translation, and generation. Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena (e.g. cohesion and coherence) in Chinese and/or English. For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge. We totally evaluate 20 general-, in-domain and commercial models based on Transformer, advanced pretraining architectures and large language models (LLMs). Our results show (1) the challenge and necessity of our evaluation benchmark; (2) fine-grained pretraining based on literary document-level training data consistently improves the modeling of discourse information. We will release the datasets, pretrained models, and leaderboard, which we hope can significantly facilitate research in this field: //github.com/longyuewangdcu/Disco-Bench.
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.
Recommendation systems have become popular and effective tools to help users discover their interesting items by modeling the user preference and item property based on implicit interactions (e.g., purchasing and clicking). Humans perceive the world by processing the modality signals (e.g., audio, text and image), which inspired researchers to build a recommender system that can understand and interpret data from different modalities. Those models could capture the hidden relations between different modalities and possibly recover the complementary information which can not be captured by a uni-modal approach and implicit interactions. The goal of this survey is to provide a comprehensive review of the recent research efforts on the multimodal recommendation. Specifically, it shows a clear pipeline with commonly used techniques in each step and classifies the models by the methods used. Additionally, a code framework has been designed that helps researchers new in this area to understand the principles and techniques, and easily runs the SOTA models. Our framework is located at: //github.com/enoche/MMRec