亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A location-aware coded caching scheme is introduced for applications with location-dependent data requests. An example of such an application is a wireless immersive experience, where users are immersed in a three-dimensional virtual world and their viewpoint varies as they move within the application area. As the wireless connectivity condition of the users also varies with their location due to small- and large-scale fading, a non-uniform memory allocation process is used to avoid excessive delivery time in the bottleneck areas. Then, a well-defined location-aware placement and delivery array (LAPDA) is used for data delivery to utilize unicast transmission with a fast converging, iterative linear beamforming process. An underlying weighted max-min transmit precoder design enables the proposed scheme to serve users in poor connectivity areas with smaller amounts of data while simultaneously delivering larger amounts to other users. Unlike previous studies in the literature, our new scheme is not constrained by the number of users or network parameters (users' cache capacity, number of antennas at the transmitter, etc.) and is suitable for large networks due to its linear transceiver structure. Despite non-uniform cache placement, the proposed scheme achieves a coded caching gain that is additive to the multiplexing gain and outperforms conventional symmetric CC schemes with only a moderate degree of freedom (DoF) loss.

相關內容

Integrating coded caching (CC) techniques into multi-input multi-output (MIMO) setups provides a substantial performance boost in terms of the achievable degrees of freedom (DoF). In this paper, we study cache-aided MIMO setups where a single server with $L$ transmit antennas communicates with a number of users each with $G$ receive antennas. We extend a baseline CC scheme, originally designed for multi-input single-output (MISO) systems, to the considered MIMO setup. However, in a proposed MIMO approach, instead of merely replicating the transmit strategy from the baseline MISO scheme, we adjust the number of users served in each transmission to maximize the achievable DoF. This approach not only makes the extension more flexible in terms of supported network parameters but also results in an improved DoF of $\max_{\beta \le G} \beta \lfloor \frac{L-1}{\beta} \rfloor + \beta (t+1)$, where $t$ is the coded caching gain. In addition, we also propose a high-performance multicast transmission design for the considered MIMO-CC setup by formulating a symmetric rate maximization problem in terms of the transmit covariance matrices for the multicast signals and solving the resulting non-convex problem using successive convex approximation. Finally, we use numerical simulations to verify both improved DoF results and enhanced MIMO multicasting performance.

Power analysis poses a significant threat to the security of cryptographic algorithms, as it can be leveraged to recover secret keys. While various software-based countermeasures exist to mitigate this non-invasive attack, they often involve a trade-off between time and space constraints. Techniques such as masking and shuffling, while effective, can noticeably impact execution speed and rely heavily on run-time random number generators. On the contrary, internally encoded implementations of block ciphers offer an alternative approach that does not rely on run-time random sources, but it comes with the drawback of requiring substantial memory space to accommodate lookup tables. Internal encoding, commonly employed in white-box cryptography, suffers from a security limitation as it does not effectively protect the secret key against statistical analysis. To overcome this weakness, this paper introduces a secure internal encoding method for an AES implementation. By addressing the root cause of vulnerabilities found in previous encoding methods, we propose a balanced encoding technique that aims to minimize the problematic correlation with key-dependent intermediate values. We analyze the potential weaknesses associated with the balanced encoding and present a method that utilizes complementary sets of lookup tables. In this approach, the size of the lookup tables is approximately 512KB, and the number of table lookups is 1,024. This is comparable to the table size of non-protected white-box AES-128 implementations, while requiring only half the number of lookups. By adopting this method, our aim is to introduce a non-masking technique that mitigates the vulnerability to statistical analysis present in current internally-encoded AES implementations.

We study energy-efficient offloading strategies in a large-scale MEC system with heterogeneous mobile users and network components. The system is considered with enabled user-task handovers that capture the mobility of various mobile users. We focus on a long-run objective and online algorithms that are applicable to realistic systems. The problem is significantly complicated by the large problem size, the heterogeneity of user tasks and network components, and the mobility of the users, for which conventional optimizers cannot reach optimum with a reasonable amount of computational and storage power. We formulate the problem in the vein of the restless multi-armed bandit process that enables the decomposition of high-dimensional state spaces and then achieves near-optimal algorithms applicable to realistically large problems in an online manner. Following the restless bandit technique, we propose two offloading policies by prioritizing the least marginal costs of selecting the corresponding computing and communication resources in the edge and cloud networks. This coincides with selecting the resources with the highest energy efficiency. Both policies are scalable to the offloading problem with a great potential to achieve proved asymptotic optimality - approach optimality as the problem size tends to infinity. With extensive numerical simulations, the proposed policies are demonstrated to clearly outperform baseline policies with respect to power conservation and robust to the tested heavy-tailed lifespan distributions of the offloaded tasks.

This paper aims to characterize the memory-rate tradeoff for decentralized caching under nonuniform file popularity and size. We consider a recently proposed decentralized modified coded caching scheme (D-MCCS) and formulate the cache placement optimization problem to minimize the average rate for the D-MCCS. To solve this challenging non-convex optimization problem, we first propose a successive Geometric Programming (GP) approximation algorithm, which guarantees convergence to a stationary point but has high computational complexity. Next, we develop a low-complexity file-group-based approach, where we propose a popularity-first and size-aware (PF-SA) cache placement strategy to partition files into two groups, taking into account the nonuniformity in file popularity and size. Both algorithms do not require the knowledge of active users beforehand for cache placement. Numerical results show that they perform very closely to each other. We further develop a lower bound for decentralized caching under nonuniform file popularity and size as a non-convex optimization problem and solved it using a similar successive GP approximation algorithm. We show that the D-MCCS with the optimized cache placement attains this lower bound when no more than two active users request files at a time. The same is true for files with uniform size but nonuniform popularity and the optimal cache placement being symmetric among files. In these cases, the optimized DMCCS characterizes the exact memory-rate tradeoff for decentralized caching. For general cases, our numerical results show that the average rate achieved by the optimized D-MCCS is very close to the lower bound.

The AI community is increasingly focused on merging logic with deep learning to create Neuro-Symbolic (NeSy) paradigms and assist neural approaches with symbolic knowledge. A significant trend in the literature involves integrating axioms and facts in loss functions by grounding logical symbols with neural networks and operators with fuzzy semantics. Logic Tensor Networks (LTN) is one of the main representatives in this category, known for its simplicity, efficiency, and versatility. However, it has been previously shown that not all fuzzy operators perform equally when applied in a differentiable setting. Researchers have proposed several configurations of operators, trading off between effectiveness, numerical stability, and generalization to different formulas. This paper presents a configuration of fuzzy operators for grounding formulas end-to-end in the logarithm space. Our goal is to develop a configuration that is more effective than previous proposals, able to handle any formula, and numerically stable. To achieve this, we propose semantics that are best suited for the logarithm space and introduce novel simplifications and improvements that are crucial for optimization via gradient-descent. We use LTN as the framework for our experiments, but the conclusions of our work apply to any similar NeSy framework. Our findings, both formal and empirical, show that the proposed configuration outperforms the state-of-the-art and that each of our modifications is essential in achieving these results.

Knowledge graph embedding (KGE) that maps entities and relations into vector representations is essential for downstream tasks. Conventional KGE methods require relatively high-dimensional entity representations to preserve the structural information of knowledge graph, but lead to oversized model parameters. Recent methods reduce model parameters by adopting low-dimensional entity representations, while developing techniques (e.g., knowledge distillation) to compensate for the reduced dimension. However, such operations produce degraded model accuracy and limited reduction of model parameters. Specifically, we view the concatenation of all entity representations as an embedding layer, and then conventional KGE methods that adopt high-dimensional entity representations equal to enlarging the width of the embedding layer to gain expressiveness. To achieve parameter efficiency without sacrificing accuracy, we instead increase the depth and propose a deeper embedding network for entity representations, i.e., a narrow embedding layer and a multi-layer dimension lifting network (LiftNet). Experiments on three public datasets show that the proposed method (implemented based on TransE and DistMult) with 4-dimensional entity representations achieves more accurate link prediction results than counterpart parameter-efficient KGE methods and strong KGE baselines, including TransE and DistMult with 512-dimensional entity representations.

Deadlocks are one of the most notorious concurrency bugs, and significant research has focused on detecting them efficiently. Dynamic predictive analyses work by observing concurrent executions, and reason about alternative interleavings that can witness concurrency bugs. Such techniques offer scalability and sound bug reports, and have emerged as an effective approach for concurrency bug detection, such as data races. Effective dynamic deadlock prediction, however, has proven a challenging task, as no deadlock predictor currently meets the requirements of soundness, high-precision, and efficiency. In this paper, we first formally establish that this tradeoff is unavoidable, by showing that (a) sound and complete deadlock prediction is intractable, in general, and (b) even the seemingly simpler task of determining the presence of potential deadlocks, which often serve as unsound witnesses for actual predictable deadlocks, is intractable. The main contribution of this work is a new class of predictable deadlocks, called sync(hronization)-preserving deadlocks. Informally, these are deadlocks that can be predicted by reordering the observed execution while preserving the relative order of conflicting critical sections. We present two algorithms for sound deadlock prediction based on this notion. Our first algorithm SPDOffline detects all sync-preserving deadlocks, with running time that is linear per abstract deadlock pattern, a novel notion also introduced in this work. Our second algorithm SPDOnline predicts all sync-preserving deadlocks that involve two threads in a strictly online fashion, runs in overall linear time, and is better suited for a runtime monitoring setting. We implemented both our algorithms and evaluated their ability to perform offline and online deadlock-prediction on a large dataset of standard benchmarks.

Gravitational lensing is the relativistic effect generated by massive bodies, which bend the space-time surrounding them. It is a deeply investigated topic in astrophysics and allows validating theoretical relativistic results and studying faint astrophysical objects that would not be visible otherwise. In recent years Machine Learning methods have been applied to support the analysis of the gravitational lensing phenomena by detecting lensing effects in data sets consisting of images associated with brightness variation time series. However, the state-of-art approaches either consider only images and neglect time-series data or achieve relatively low accuracy on the most difficult data sets. This paper introduces DeepGraviLens, a novel multi-modal network that classifies spatio-temporal data belonging to one non-lensed system type and three lensed system types. It surpasses the current state of the art accuracy results by $\approx 3\%$ to $\approx 11\%$, depending on the considered data set. Such an improvement will enable the acceleration of the analysis of lensed objects in upcoming astrophysical surveys, which will exploit the petabytes of data collected, e.g., from the Vera C. Rubin Observatory.

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, such as quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a $ProbSparse$ Self-attention mechanism, which achieves $O(L \log L)$ in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.

北京阿比特科技有限公司