亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new model for generating molecular data by combining discrete and continuous diffusion processes. Our model generates a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates. The use of diffusion processes allows for capturing the probabilistic nature of molecular processes and the ability to explore the effect of different factors on molecular structures and properties. Additionally, we propose a novel graph transformer architecture to denoise the diffusion process. The transformer is equivariant to Euclidean transformations, allowing it to learn invariant atom and edge representations while preserving the equivariance of atom coordinates. This transformer can be used to learn molecular representations robust to geometric transformations. We evaluate the performance of our model through experiments and comparisons with existing methods, showing its ability to generate more stable and valid molecules with good properties. Our model is a promising approach for designing molecules with desired properties and can be applied to a wide range of tasks in molecular modeling.

相關內容

GitHub 發布的文本編輯器。

We present Viewset Diffusion: a framework for training image-conditioned 3D generative models from 2D data. Image-conditioned 3D generative models allow us to address the inherent ambiguity in single-view 3D reconstruction. Given one image of an object, there is often more than one possible 3D volume that matches the input image, because a single image never captures all sides of an object. Deterministic models are inherently limited to producing one possible reconstruction and therefore make mistakes in ambiguous settings. Modelling distributions of 3D shapes is challenging because 3D ground truth data is often not available. We propose to solve the issue of data availability by training a diffusion model which jointly denoises a multi-view image set.We constrain the output of Viewset Diffusion models to a single 3D volume per image set, guaranteeing consistent geometry. Training is done through reconstruction losses on renderings, allowing training with only three images per object. Our design of architecture and training scheme allows our model to perform 3D generation and generative, ambiguity-aware single-view reconstruction in a feed-forward manner. Project page: szymanowiczs.github.io/viewset-diffusion.

Molecular property prediction is an important problem in drug discovery and materials science. As geometric structures have been demonstrated necessary for molecular property prediction, 3D information has been combined with various graph learning methods to boost prediction performance. However, obtaining the geometric structure of molecules is not feasible in many real-world applications due to the high computational cost. In this work, we propose a novel 3D pre-training framework (dubbed 3D PGT), which pre-trains a model on 3D molecular graphs, and then fine-tunes it on molecular graphs without 3D structures. Based on fact that bond length, bond angle, and dihedral angle are three basic geometric descriptors corresponding to a complete molecular 3D conformer, we first develop a multi-task generative pre-train framework based on these three attributes. Next, to automatically fuse these three generative tasks, we design a surrogate metric using the \textit{total energy} to search for weight distribution of the three pretext task since total energy corresponding to the quality of 3D conformer.Extensive experiments on 2D molecular graphs are conducted to demonstrate the accuracy, efficiency and generalization ability of the proposed 3D PGT compared to various pre-training baselines.

Recently, diffusion models have achieved remarkable performance in data generation, e.g., generating high-quality images. Nevertheless, chemistry molecules often have complex non-Euclidean spatial structures, with the behavior changing dynamically and unpredictably. Most existing diffusion models highly rely on computing the probability distribution, i.e., Gaussian distribution, in Euclidean space, which cannot capture internal non-Euclidean structures of molecules, especially the hierarchical structures of the implicit manifold surface represented by molecules. It has been observed that the complex hierarchical structures in hyperbolic embedding space become more prominent and easier to be captured. In order to leverage both the data generation power of diffusion models and the strong capability to extract complex geometric features of hyperbolic embedding, we propose to extend the diffusion model to hyperbolic manifolds for molecule generation, namely, Hyperbolic Graph Diffusion Model (HGDM). The proposed HGDM employs a hyperbolic variational autoencoder to generate the hyperbolic hidden representation of nodes and then a score-based hyperbolic graph neural network is used to learn the distribution in hyperbolic space. Numerical experimental results show that the proposed HGDM achieves higher performance on several molecular datasets, compared with state-of-the-art methods.

Inferring causal effects of continuous-valued treatments from observational data is a crucial task promising to better inform policy- and decision-makers. A critical assumption needed to identify these effects is that all confounding variables -- causal parents of both the treatment and the outcome -- are included as covariates. Unfortunately, given observational data alone, we cannot know with certainty that this criterion is satisfied. Sensitivity analyses provide principled ways to give bounds on causal estimates when confounding variables are hidden. While much attention is focused on sensitivity analyses for discrete-valued treatments, much less is paid to continuous-valued treatments. We present novel methodology to bound both average and conditional average continuous-valued treatment-effect estimates when they cannot be point identified due to hidden confounding. A semi-synthetic benchmark on multiple datasets shows our method giving tighter coverage of the true dose-response curve than a recently proposed continuous sensitivity model and baselines. Finally, we apply our method to a real-world observational case study to demonstrate the value of identifying dose-dependent causal effects.

Molecule discovery plays a crucial role in various scientific fields, advancing the design of tailored materials and drugs. Traditional methods for molecule discovery follow a trial-and-error process, which are both time-consuming and costly, while computational approaches such as artificial intelligence (AI) have emerged as revolutionary tools to expedite various tasks, like molecule-caption translation. Despite the importance of molecule-caption translation for molecule discovery, most of the existing methods heavily rely on domain experts, require excessive computational cost, and suffer from poor performance. On the other hand, Large Language Models (LLMs), like ChatGPT, have shown remarkable performance in various cross-modal tasks due to their great powerful capabilities in natural language understanding, generalization, and reasoning, which provides unprecedented opportunities to advance molecule discovery. To address the above limitations, in this work, we propose a novel LLMs-based framework (\textbf{MolReGPT}) for molecule-caption translation, where a retrieval-based prompt paradigm is introduced to empower molecule discovery with LLMs like ChatGPT without fine-tuning. More specifically, MolReGPT leverages the principle of molecular similarity to retrieve similar molecules and their text descriptions from a local database to ground the generation of LLMs through in-context few-shot molecule learning. We evaluate the effectiveness of MolReGPT via molecule-caption translation, which includes molecule understanding and text-based molecule generation. Experimental results show that MolReGPT outperforms fine-tuned models like MolT5-base without any additional training. To the best of our knowledge, MolReGPT is the first work to leverage LLMs in molecule-caption translation for advancing molecule discovery.

Medical caption prediction which can be regarded as a task of medical report generation (MRG), requires the automatic generation of coherent and accurate captions for the given medical images. However, the scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks capable of harnessing the potential artificial general intelligence power like large language models (LLMs). In this work, we propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs), in computer vision and natural language processing with a specific focus on medical report generation. Specifically, following BLIP-2, a state-of-the-art vision-language pre-training approach, we introduce our encoder-decoder-based MRG model. This model utilizes a lightweight query Transformer to connect two FMs: the giant vision Transformer EVA-ViT-g and a bilingual LLM trained to align with human intentions (referred to as ChatGLM-6B). Furthermore, we conduct ablative experiments on the trainable components of the model to identify the crucial factors for effective transfer learning. Our findings demonstrate that unfreezing EVA-ViT-g to learn medical image representations, followed by parameter-efficient training of ChatGLM-6B to capture the writing styles of medical reports, is essential for achieving optimal results. Our best attempt (PCLmed Team) achieved the 4th and the 2nd, respectively, out of 13 participating teams, based on the BERTScore and ROUGE-1 metrics, in the ImageCLEFmedical Caption 2023 Caption Prediction Task competition.

Deep learning shows great potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly with respect to certain implied parameters. Recently, the diffusion Model becomes a raising class of generative models by virtue of its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its natural drawback of a slow generation process, leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We firstly state the main problem with two landmark works - DDPM and DSM. Then, we present a diverse range of advanced techniques to speed up the diffusion models - training schedule, training-free sampling, mixed-modeling, and score & diffusion unification. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations & further directions.

Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.

Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecule property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司