亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We examine (directed) greybox fuzzing from a geometrical perspective, viewing dissimilarities on inputs and on control flow graphs (with dynamical statistics) as primitive objects of interest. We prototype and evaluate GoExploreFuzz, a greybox fuzzer for time-intensive programs that incorporates this perspective. The results indicate useful capabilities for greybox fuzzing that have hitherto been underutilized, notably quantifying the diversity of paths and autonomously tuning the "bandwidth" of mutations.

相關內容

Notability 是一款功能強大的(de)備(bei)(bei)注記(ji)錄軟件,可用(yong)于注釋文(wen)稿(gao)、草(cao)擬想法、錄制(zhi)演講、記(ji)錄備(bei)(bei)注等。它將鍵入、手寫、錄音和照片結合在(zai)一起,便于您根(gen)據(ju)需要創建相應的(de)備(bei)(bei)注。在(zai) iCloud 的(de)支持下,您的(de)備(bei)(bei)注在(zai) iPad、iPhone 和 Mac 上將始終(zhong)可用(yong)。晨昏相伴,如影隨(sui)行。

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Suitable discretizations through tensor product formulas of popular multidimensional operators (diffusion or diffusion--advection, for instance) lead to matrices with $d$-dimensional Kronecker sum structure. For evolutionary Partial Differential Equations containing such operators and integrated in time with exponential integrators, it is then of paramount importance to efficiently approximate the actions of $\varphi$-functions of the arising matrices. In this work, we show how to produce directional split approximations of third order with respect to the time step size. They conveniently employ tensor-matrix products (the so-called $\mu$-mode product and related Tucker operator, realized in practice with high performance level 3 BLAS), and allow for the effective usage of exponential Runge--Kutta integrators up to order three. The technique can also be efficiently implemented on modern computer hardware such as Graphic Processing Units. The approach has been successfully tested against state-of-the-art techniques on two well-known physical models that lead to Turing patterns, namely the 2D Schnakenberg and the 3D FitzHugh--Nagumo systems, on different architectures.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

We provide a novel approach to achieving a desired outcome in a coordination game: the original 2x2 game is embedded in a 2x3 game where one of the players may use a third action. For a large set of payoff values only one of the Nash equilibria of the original 2x2 game is stable under replicator dynamics. We show that this Nash equilibrium is the {\omega}-limit of all initial conditions in the interior of the state space for the modified 2x3 game. Thus, the existence of a third action for one of the players, although not used, allows both players to coordinate on one Nash equilibrium. This Nash equilibrium is the one preferred by, at least, the player with access to the new action. This approach deals with both coordination failure (players choose the payoff-dominant Nash equilibrium, if such a Nash equilibrium exists) and miscoordination (players do not use mixed strategies).

The Gaussian chain graph model simultaneously parametrizes (i) the direct effects of $p$ predictors on $q$ outcomes and (ii) the residual partial covariances between pairs of outcomes. We introduce a new method for fitting sparse Gaussian chain graph models with spike-and-slab LASSO (SSL) priors. We develop an Expectation Conditional Maximization algorithm to obtain sparse estimates of the $p \times q$ matrix of direct effects and the $q \times q$ residual precision matrix. Our algorithm iteratively solves a sequence of penalized maximum likelihood problems with self-adaptive penalties that gradually filter out negligible regression coefficients and partial covariances. Because it adaptively penalizes individual model parameters, our method is seen to outperform fixed-penalty competitors on simulated data. We establish the posterior contraction rate for our model, buttressing our method's excellent empirical performance with strong theoretical guarantees. Using our method, we estimated the direct effects of diet and residence type on the composition of the gut microbiome of elderly adults.

Despite fundamental interests in learning quantum circuits, the existence of a computationally efficient algorithm for learning shallow quantum circuits remains an open question. Because shallow quantum circuits can generate distributions that are classically hard to sample from, existing learning algorithms do not apply. In this work, we present a polynomial-time classical algorithm for learning the description of any unknown $n$-qubit shallow quantum circuit $U$ (with arbitrary unknown architecture) within a small diamond distance using single-qubit measurement data on the output states of $U$. We also provide a polynomial-time classical algorithm for learning the description of any unknown $n$-qubit state $\lvert \psi \rangle = U \lvert 0^n \rangle$ prepared by a shallow quantum circuit $U$ (on a 2D lattice) within a small trace distance using single-qubit measurements on copies of $\lvert \psi \rangle$. Our approach uses a quantum circuit representation based on local inversions and a technique to combine these inversions. This circuit representation yields an optimization landscape that can be efficiently navigated and enables efficient learning of quantum circuits that are classically hard to simulate.

In this paper we develop a linear expectile hidden Markov model for the analysis of cryptocurrency time series in a risk management framework. The methodology proposed allows to focus on extreme returns and describe their temporal evolution by introducing in the model time-dependent coefficients evolving according to a latent discrete homogeneous Markov chain. As it is often used in the expectile literature, estimation of the model parameters is based on the asymmetric normal distribution. Maximum likelihood estimates are obtained via an Expectation-Maximization algorithm using efficient M-step update formulas for all parameters. We evaluate the introduced method with both artificial data under several experimental settings and real data investigating the relationship between daily Bitcoin returns and major world market indices.

Alon and Shapira proved that every monotone class (closed under taking subgraphs) of undirected graphs is strongly testable, that is, under the promise that a given graph is either in the class or $\varepsilon$-far from it, there is a test using a constant number of samples (depending on $\varepsilon$ only) that rejects every graph not in the class with probability at least one half, and always accepts a graph in the class. However, their bound on the number of samples is quite large, since they heavily rely on Szemer\'edi's regularity lemma. We study the case of posets and show that every monotone class of posets is easily testable, that is, a polynomial number of samples is sufficient. We achieve this via proving a polynomial removal lemma for posets. We give a simple classification: for every monotone class of posets there is an $h$ such that the class is indistinguishable (every large enough poset in one class is $\varepsilon$-close to a poset in the other class) from the class of posets free of the chain $C_h$. This allows to test every monotone class of posets using $O(\varepsilon^{-1})$ samples. The test has two-sided error, but it is almost complete: the probability to refute a poset in the class is polynomially small in the size of the poset. The analogous results hold for comparability graphs, too.

Do deep learning models for instance segmentation generalize to novel objects in a systematic way? For classification, such behavior has been questioned. In this study, we aim to understand if certain design decisions such as framework, architecture or pre-training contribute to the semantic understanding of instance segmentation. To answer this question, we consider a special case of robustness and compare pre-trained models on a challenging benchmark for object-centric, out-of-distribution texture. We do not introduce another method in this work. Instead, we take a step back and evaluate a broad range of existing literature. This includes Cascade and Mask R-CNN, Swin Transformer, BMask, YOLACT(++), DETR, BCNet, SOTR and SOLOv2. We find that YOLACT++, SOTR and SOLOv2 are significantly more robust to out-of-distribution texture than other frameworks. In addition, we show that deeper and dynamic architectures improve robustness whereas training schedules, data augmentation and pre-training have only a minor impact. In summary we evaluate 68 models on 61 versions of MS COCO for a total of 4148 evaluations.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

北京阿比特科技有限公司