Even when actual technologies present the potential to augment inclusion and the United Nations has been stablished the digital access to information as a human right, people with disabilities continuously faced barriers in their profession. In many cases, in sciences, the lack of accessible and user centred tools left behind researches with disabilities and not facilitate them to conduct front-line research by using their respective strengths. In this contribution, we discuss some hurdles and solutions relevant for using new technology for data analysis, analysing the barriers found by final users. A focus group session was conducted with nine people with and without visual impairment, using the tool sonoUno with one linear function and an astronomical data set downloaded from the Sloan Digital Sky Survey. As a result of the focus group study, incorporating data analysis using sonification, we conclude that functionally diverse people require tools to be autonomous, thereby enabling precision, certainty, effectiveness and efficiency in their work, resulting in enhanced equity. This can be achieved by pursuing a user-centred design approach as integral to software development, and by adapting resources according to the research objectives. Development of tools that empower people with wide-ranging abilities to not only access data using multi-sensorial techniques, but also address the current lack of inclusion, is sorely needed.
Electrocardiography analysis is widely used in various clinical applications and Deep Learning models for classification tasks are currently in the focus of research. Due to their data-driven character, they bear the potential to handle signal noise efficiently, but its influence on the accuracy of these methods is still unclear. Therefore, we benchmark the influence of four types of noise on the accuracy of a Deep Learning-based method for atrial fibrillation detection in 12-lead electrocardiograms. We use a subset of a publicly available dataset (PTBXL) and use the metadata provided by human experts regarding noise for assigning a signal quality to each electrocardiogram. Furthermore, we compute a quantitative signal-to-noise ratio for each electrocardiogram. We analyze the accuracy of the Deep Learning model with respect to both metrics and observe that the method can robustly identify atrial fibrillation, even in cases signals are labelled by human experts as being noisy on multiple leads. False positive and false negative rates are slightly worse for data being labelled as noisy. Interestingly, data annotated as showing baseline drift noise results in an accuracy very similar to data without. We conclude that the issue of processing noisy electrocardiography data can be addressed successfully by Deep Learning methods that might not need preprocessing as many conventional methods do.
Pre-training is prevalent in nowadays deep learning to improve the learned model's performance. However, in the literature on federated learning (FL), neural networks are mostly initialized with random weights. These attract our interest in conducting a systematic study to explore pre-training for FL. Across multiple visual recognition benchmarks, we found that pre-training can not only improve FL, but also close its accuracy gap to the counterpart centralized learning, especially in the challenging cases of non-IID clients' data. To make our findings applicable to situations where pre-trained models are not directly available, we explore pre-training with synthetic data or even with clients' data in a decentralized manner, and found that they can already improve FL notably. Interestingly, many of the techniques we explore are complementary to each other to further boost the performance, and we view this as a critical result toward scaling up deep FL for real-world applications. We conclude our paper with an attempt to understand the effect of pre-training on FL. We found that pre-training enables the learned global models under different clients' data conditions to converge to the same loss basin, and makes global aggregation in FL more stable. Nevertheless, pre-training seems to not alleviate local model drifting, a fundamental problem in FL under non-IID data.
Adaptive design optimization (ADO) is a state-of-the-art technique for experimental design (Cavagnaro, Myung, Pitt, & Kujala, 2010). ADO dynamically identifies stimuli that, in expectation, yield the most information about a hypothetical construct of interest (e.g., parameters of a cognitive model). To calculate this expectation, ADO leverages the modeler's existing knowledge, specified in the form of a prior distribution. Informative priors align with the distribution of the focal construct in the participant population. This alignment is assumed by ADO's internal assessment of expected information gain. If the prior is instead misinformative, i.e., does not align with the participant population, ADO's estimates of expected information gain could be inaccurate. In many cases, the true distribution that characterizes the participant population is unknown, and experimenters rely on heuristics in their choice of prior and without an understanding of how this choice affects ADO's behavior. Our work introduces a mathematical framework that facilitates investigation of the consequences of the choice of prior distribution on the efficiency of experiments designed using ADO. Through theoretical and empirical results, we show that, in the context of prior misinformation, measures of expected information gain are distinct from the correctness of the corresponding inference. Through a series of simulation experiments, we show that, in the case of parameter estimation, ADO nevertheless outperforms other design methods. Conversely, in the case of model selection, misinformative priors can lead inference to favor the wrong model, and rather than mitigating this pitfall, ADO exacerbates it.
In recent years, industry leaders and researchers have proposed to use technical provenance standards to address visual misinformation spread through digitally altered media. By adding immutable and secure provenance information such as authorship and edit date to media metadata, social media users could potentially better assess the validity of the media they encounter. However, it is unclear how end users would respond to provenance information, or how to best design provenance indicators to be understandable to laypeople. We conducted an online experiment with 595 participants from the US and UK to investigate how provenance information altered users' accuracy perceptions and trust in visual content shared on social media. We found that provenance information often lowered trust and caused users to doubt deceptive media, particularly when it revealed that the media was composited. We additionally tested conditions where the provenance information itself was shown to be incomplete or invalid, and found that these states have a significant impact on participants' accuracy perceptions and trust in media, leading them, in some cases, to disbelieve honest media. Our findings show that provenance, although enlightening, is still not a concept well-understood by users, who confuse media credibility with the orthogonal (albeit related) concept of provenance credibility. We discuss how design choices may contribute to provenance (mis)understanding, and conclude with implications for usable provenance systems, including clearer interfaces and user education.
ChatGPT is a large language model trained by OpenAI. In this technical report, we explore for the first time the capability of ChatGPT for programming numerical algorithms. Specifically, we examine the capability of GhatGPT for generating codes for numerical algorithms in different programming languages, for debugging and improving written codes by users, for completing missed parts of numerical codes, rewriting available codes in other programming languages, and for parallelizing serial codes. Additionally, we assess if ChatGPT can recognize if given codes are written by humans or machines. To reach this goal, we consider a variety of mathematical problems such as the Poisson equation, the diffusion equation, the incompressible Navier-Stokes equations, compressible inviscid flow, eigenvalue problems, solving linear systems of equations, storing sparse matrices, etc. Furthermore, we exemplify scientific machine learning such as physics-informed neural networks and convolutional neural networks with applications to computational physics. Through these examples, we investigate the successes, failures, and challenges of ChatGPT. Examples of failures are producing singular matrices, operations on arrays with incompatible sizes, programming interruption for relatively long codes, etc. Our outcomes suggest that ChatGPT can successfully program numerical algorithms in different programming languages, but certain limitations and challenges exist that require further improvement of this machine learning model.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.