亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mobile autonomy relies on the precise perception of dynamic environments. Robustly tracking moving objects in 3D world thus plays a pivotal role for applications like trajectory prediction, obstacle avoidance, and path planning. While most current methods utilize LiDARs or cameras for Multiple Object Tracking (MOT), the capabilities of 4D imaging radars remain largely unexplored. Recognizing the challenges posed by radar noise and point sparsity in 4D radar data, we introduce RaTrack, an innovative solution tailored for radar-based tracking. Bypassing the typical reliance on specific object types and 3D bounding boxes, our method focuses on motion segmentation and clustering, enriched by a motion estimation module. Evaluated on the View-of-Delft dataset, RaTrack showcases superior tracking precision of moving objects, largely surpassing the performance of the state of the art.

相關內容

This paper presents FlowSUM, a normalizing flows-based variational encoder-decoder framework for Transformer-based summarization. Our approach tackles two primary challenges in variational summarization: insufficient semantic information in latent representations and posterior collapse during training. To address these challenges, we employ normalizing flows to enable flexible latent posterior modeling, and we propose a controlled alternate aggressive training (CAAT) strategy with an improved gate mechanism. Experimental results show that FlowSUM significantly enhances the quality of generated summaries and unleashes the potential for knowledge distillation with minimal impact on inference time. Furthermore, we investigate the issue of posterior collapse in normalizing flows and analyze how the summary quality is affected by the training strategy, gate initialization, and the type and number of normalizing flows used, offering valuable insights for future research.

Autonomous vehicles need to accomplish their tasks while interacting with human drivers in traffic. It is thus crucial to equip autonomous vehicles with artificial reasoning to better comprehend the intentions of the surrounding traffic, thereby facilitating the accomplishments of the tasks. In this work, we propose a behavioral model that encodes drivers' interacting intentions into latent social-psychological parameters. Leveraging a Bayesian filter, we develop a receding-horizon optimization-based controller for autonomous vehicle decision-making which accounts for the uncertainties in the interacting drivers' intentions. For online deployment, we design a neural network architecture based on the attention mechanism which imitates the behavioral model with online estimated parameter priors. We also propose a decision tree search algorithm to solve the decision-making problem online. The proposed behavioral model is then evaluated in terms of its capabilities for real-world trajectory prediction. We further conduct extensive evaluations of the proposed decision-making module, in forced highway merging scenarios, using both simulated environments and real-world traffic datasets. The results demonstrate that our algorithms can complete the forced merging tasks in various traffic conditions while ensuring driving safety.

Ensuring trust and accountability in Artificial Intelligence systems demands explainability of its outcomes. Despite significant progress in Explainable AI, human biases still taint a substantial portion of its training data, raising concerns about unfairness or discriminatory tendencies. Current approaches in the field of Algorithmic Fairness focus on mitigating such biases in the outcomes of a model, but few attempts have been made to try to explain \emph{why} a model is biased. To bridge this gap between the two fields, we propose a comprehensive approach that uses optimal transport theory to uncover the causes of discrimination in Machine Learning applications, with a particular emphasis on image classification. We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions. This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence \emph{on} the bias. Taking advantage of this interplay of enforcing and explaining fairness, our method hold significant implications for the development of trustworthy and unbiased AI systems, fostering transparency, accountability, and fairness in critical decision-making scenarios across diverse domains.

Counterfactual fairness requires that a person would have been classified in the same way by an AI or other algorithmic system if they had a different protected class, such as a different race or gender. This is an intuitive standard, as reflected in the U.S. legal system, but its use is limited because counterfactuals cannot be directly observed in real-world data. On the other hand, group fairness metrics (e.g., demographic parity or equalized odds) are less intuitive but more readily observed. In this paper, we use $\textit{causal context}$ to bridge the gaps between counterfactual fairness, robust prediction, and group fairness. First, we motivate counterfactual fairness by showing that there is not necessarily a fundamental trade-off between fairness and accuracy because, under plausible conditions, the counterfactually fair predictor is in fact accuracy-optimal in an unbiased target distribution. Second, we develop a correspondence between the causal graph of the data-generating process and which, if any, group fairness metrics are equivalent to counterfactual fairness. Third, we show that in three common fairness contexts$\unicode{x2013}$measurement error, selection on label, and selection on predictors$\unicode{x2013}$counterfactual fairness is equivalent to demographic parity, equalized odds, and calibration, respectively. Counterfactual fairness can sometimes be tested by measuring relatively simple group fairness metrics.

Finding synthetic artifacts of spoofing data will help the anti-spoofing countermeasures (CMs) system discriminate between spoofed and real speech. The Conformer combines the best of convolutional neural network and the Transformer, allowing it to aggregate global and local information. This may benefit the CM system to capture the synthetic artifacts hidden both locally and globally. In this paper, we present the transfer learning based MFA-Conformer structure for CM systems. By pre-training the Conformer encoder with different tasks, the robustness of the CM system is enhanced. The proposed method is evaluated on both Chinese and English spoofing detection databases. In the FAD clean set, proposed method achieves an EER of 0.04%, which dramatically outperforms the baseline. Our system is also comparable to the pre-training methods base on Wav2Vec 2.0. Moreover, we also provide a detailed analysis of the robustness of different models.

Recent advances in LLMs have revolutionized the landscape of reasoning tasks. To enhance the capabilities of LLMs to emulate human reasoning, prior works focus on modeling reasoning steps using specific thought structures like chains, trees, or graphs. However, LLM-based reasoning continues to encounter three challenges: 1) Selecting appropriate reasoning structures for various tasks; 2) Exploiting known conditions sufficiently and efficiently to deduce new insights; 3) Considering the impact of historical reasoning experience. To address these challenges, we propose DetermLR, a novel reasoning framework that formulates the reasoning process as a transformational journey from indeterminate premises to determinate ones. This process is marked by the incremental accumulation of determinate premises, making the conclusion progressively closer to clarity. DetermLR includes three essential components: 1) Premise identification: We categorize premises into two distinct types: determinate and indeterminate. This empowers LLMs to customize reasoning structures to match the specific task complexities. 2) Premise prioritization and exploration: We leverage quantitative measurements to assess the relevance of each premise to the target, prioritizing more relevant premises for exploring new insights. 3) Iterative process with reasoning memory: We introduce a reasoning memory module to automate storage and extraction of available premises and reasoning paths, preserving historical reasoning details for more accurate premise prioritization. Comprehensive experimental results show that DetermLR outperforms all baselines on four challenging logical reasoning tasks: LogiQA, ProofWriter, FOLIO, and LogicalDeduction. DetermLR can achieve better reasoning performance while requiring fewer visited states, highlighting its superior efficiency and effectiveness in tackling logical reasoning tasks.

Counterfactual inference aims to answer retrospective "what if" questions and thus belongs to the most fine-grained type of inference in Pearl's causality ladder. Existing methods for counterfactual inference with continuous outcomes aim at point identification and thus make strong and unnatural assumptions about the underlying structural causal model. In this paper, we relax these assumptions and aim at partial counterfactual identification of continuous outcomes, i.e., when the counterfactual query resides in an ignorance interval with informative bounds. We prove that, in general, the ignorance interval of the counterfactual queries has non-informative bounds, already when functions of structural causal models are continuously differentiable. As a remedy, we propose a novel sensitivity model called Curvature Sensitivity Model. This allows us to obtain informative bounds by bounding the curvature of level sets of the functions. We further show that existing point counterfactual identification methods are special cases of our Curvature Sensitivity Model when the bound of the curvature is set to zero. We then propose an implementation of our Curvature Sensitivity Model in the form of a novel deep generative model, which we call Augmented Pseudo-Invertible Decoder. Our implementation employs (i) residual normalizing flows with (ii) variational augmentations. We empirically demonstrate the effectiveness of our Augmented Pseudo-Invertible Decoder. To the best of our knowledge, ours is the first partial identification model for Markovian structural causal models with continuous outcomes.

Objective: Sleep spindles contain crucial brain dynamics information. We introduce the novel non-linear time-frequency analysis tool 'Concentration of Frequency and Time' (ConceFT) to create an interpretable automated algorithm for sleep spindle annotation in EEG data and to measure spindle instantaneous frequencies (IFs). Methods: ConceFT effectively reduces stochastic EEG influence, enhancing spindle visibility in the time-frequency representation. Our automated spindle detection algorithm, ConceFT-Spindle (ConceFT-S), is compared to A7 (non-deep learning) and SUMO (deep learning) using Dream and MASS benchmark databases. We also quantify spindle IF dynamics. Results: ConceFT-S achieves F1 scores of 0.749 in Dream and 0.786 in MASS, which is equivalent to or surpass A7 and SUMO with statistical significance. We reveal that spindle IF is generally nonlinear. Conclusion: ConceFT offers an accurate, interpretable EEG-based sleep spindle detection algorithm and enables spindle IF quantification.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

北京阿比特科技有限公司