Training transformer models requires substantial GPU compute and memory resources. In homogeneous clusters, distributed strategies allocate resources evenly, but this approach is inefficient for heterogeneous clusters, where GPUs differ in power and memory. As high-end GPUs are costly and limited in availability, heterogeneous clusters with diverse GPU types are becoming more common. Existing methods attempt to balance compute across GPUs based on capacity but often underutilize compute due to memory constraints. We present Cephalo, a system that optimizes compute and memory usage by decoupling compute distribution from training state assignment. %Compared to state-of-the-art methods, Cephalo achieves significantly higher training throughput while supporting larger models and batch sizes. Cephalo outperforms state-of-the-art methods by achieving significantly higher training throughput while supporting larger models and batch sizes.
Diffusion based text-to-image models are trained on large datasets scraped from the Internet, potentially containing unacceptable concepts (e.g., copyright-infringing or unsafe). We need concept removal techniques (CRTs) which are i) effective in preventing the generation of images with unacceptable concepts, ii) utility-preserving on acceptable concepts, and, iii) robust against evasion with adversarial prompts. No prior CRT satisfies all these requirements simultaneously. We introduce Espresso, the first robust concept filter based on Contrastive Language-Image Pre-Training (CLIP). We identify unacceptable concepts by using the distance between the embedding of a generated image to the text embeddings of both unacceptable and acceptable concepts. This lets us fine-tune for robustness by separating the text embeddings of unacceptable and acceptable concepts while preserving utility. We present a pipeline to evaluate various CRTs to show that Espresso is more effective and robust than prior CRTs, while retaining utility.
With rapid advances, generative large language models (LLMs) dominate various Natural Language Processing (NLP) tasks from understanding to reasoning. Yet, language models' inherent vulnerabilities may be exacerbated due to increased accessibility and unrestricted model training on massive data. A malicious adversary may publish poisoned data online and conduct backdoor attacks on the victim LLMs pre-trained on the poisoned data. Backdoored LLMs behave innocuously for normal queries and generate harmful responses when the backdoor trigger is activated. Despite significant efforts paid to LLMs' safety issues, LLMs are still struggling against backdoor attacks. As Anthropic recently revealed, existing safety training strategies, including supervised fine-tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), fail to revoke the backdoors once the LLM is backdoored during the pre-training stage. In this paper, we present Simulate and Eliminate (SANDE) to erase the undesired backdoored mappings for generative LLMs. We initially propose Overwrite Supervised Fine-tuning (OSFT) for effective backdoor removal when the trigger is known. Then, to handle scenarios where trigger patterns are unknown, we integrate OSFT into our two-stage framework, SANDE. Unlike other works that assume access to cleanly trained models, our safety-enhanced LLMs are able to revoke backdoors without any reference. Consequently, our safety-enhanced LLMs no longer produce targeted responses when the backdoor triggers are activated. We conduct comprehensive experiments to show that our proposed SANDE is effective against backdoor attacks while bringing minimal harm to LLMs' powerful capability.
Deep state-space models (SSMs), like recent Mamba architectures, are emerging as a promising alternative to CNN and Transformer networks. Existing Mamba-based restoration methods process the visual data by leveraging a flatten-and-scan strategy that converts image patches into a 1D sequence before scanning. However, this scanning paradigm ignores local pixel dependencies and introduces spatial misalignment by positioning distant pixels incorrectly adjacent, which reduces local noise-awareness and degrades image sharpness in low-level vision tasks. To overcome these issues, we propose a novel slice-and-scan strategy that alternates scanning along intra- and inter-slices. We further design a new Vision State Space Module (VSSM) for image deblurring, and tackle the inefficiency challenges of the current Mamba-based vision module. Building upon this, we develop XYScanNet, an SSM architecture integrated with a lightweight feature fusion module for enhanced image deblurring. XYScanNet, maintains competitive distortion metrics and significantly improves perceptual performance. Experimental results show that XYScanNet enhances KID by $17\%$ compared to the nearest competitor. Our code will be released soon.
Large Language Models (LLMs) are increasingly employed in complex workflows, where different LLMs and fine-tuned variants collaboratively address complex tasks. However, these systems face significant inefficiencies due to redundant context processing of the shared context. We propose DroidSpeak, a framework that optimizes context sharing between fine-tuned LLMs derived from the same foundational model. DroidSpeak identifies critical layers in the KV cache and selectively recomputes them, enabling effective reuse of intermediate data while maintaining high accuracy. Our approach balances computational efficiency and task fidelity, significantly reducing inference latency and throughput bottlenecks. Experiments on diverse datasets and model pairs demonstrate that DroidSpeak achieves up to 3x higher throughputs and 2.6x faster prefill times with negligible accuracy loss compared to full recomputation.
Interactive segmentation aims to extract objects of interest from an image based on user-provided clicks. In real-world applications, there is often a need to segment a series of images featuring the same target object. However, existing methods typically process one image at a time, failing to consider the sequential nature of the images. To overcome this limitation, we propose a novel method called Sequence Prompt Transformer (SPT), the first to utilize sequential image information for interactive segmentation. Our model comprises two key components: (1) Sequence Prompt Transformer (SPT) for acquiring information from sequence of images, clicks and masks to improve accurate. (2) Top-k Prompt Selection (TPS) selects precise prompts for SPT to further enhance the segmentation effect. Additionally, we create the ADE20K-Seq benchmark to better evaluate model performance. We evaluate our approach on multiple benchmark datasets and show that our model surpasses state-of-the-art methods across all datasets.
Data poisoning attacks pose one of the biggest threats to modern AI systems, necessitating robust defenses. While extensive efforts have been made to develop empirical defenses, attackers continue to evolve, creating sophisticated methods to circumvent these measures. To address this, we must move beyond empirical defenses and establish provable certification methods that guarantee robustness. This paper introduces a novel certification approach, BiCert, using Bilinear Mixed Integer Programming (BMIP) to compute sound deterministic bounds that provide such provable robustness. Using BMIP, we compute the reachable set of parameters that could result from training with potentially manipulated data. A key element to make this computation feasible is to relax the reachable parameter set to a convex set between training iterations. At test time, this parameter set allows us to predict all possible outcomes, guaranteeing robustness. BiCert is more precise than previous methods, which rely solely on interval and polyhedral bounds. Crucially, our approach overcomes the fundamental limitation of prior approaches where parameter bounds could only grow, often uncontrollably. We show that BiCert's tighter bounds eliminate a key source of divergence issues, resulting in more stable training and higher certified accuracy.
We introduce Olympus, a new approach that transforms Multimodal Large Language Models (MLLMs) into a unified framework capable of handling a wide array of computer vision tasks. Utilizing a controller MLLM, Olympus delegates over 20 specialized tasks across images, videos, and 3D objects to dedicated modules. This instruction-based routing enables complex workflows through chained actions without the need for training heavy generative models. Olympus easily integrates with existing MLLMs, expanding their capabilities with comparable performance. Experimental results demonstrate that Olympus achieves an average routing accuracy of 94.75% across 20 tasks and precision of 91.82% in chained action scenarios, showcasing its effectiveness as a universal task router that can solve a diverse range of computer vision tasks. Project page: //github.com/yuanze-lin/Olympus_page
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.