Visual Prompting (VP) is an emerging and powerful technique that allows sample-efficient adaptation to downstream tasks by engineering a well-trained frozen source model. In this work, we explore the benefits of VP in constructing compelling neural network classifiers with differential privacy (DP). We explore and integrate VP into canonical DP training methods and demonstrate its simplicity and efficiency. In particular, we discover that VP in tandem with PATE, a state-of-the-art DP training method that leverages the knowledge transfer from an ensemble of teachers, achieves the state-of-the-art privacy-utility trade-off with minimum expenditure of privacy budget. Moreover, we conduct additional experiments on cross-domain image classification with a sufficient domain gap to further unveil the advantage of VP in DP. Lastly, we also conduct extensive ablation studies to validate the effectiveness and contribution of VP under DP consideration. Our code is available at (//github.com/EzzzLi/Prompt-PATE).
Vision Transformers (ViTs) are becoming more popular and dominating technique for various vision tasks, compare to Convolutional Neural Networks (CNNs). As a demanding technique in computer vision, ViTs have been successfully solved various vision problems while focusing on long-range relationships. In this paper, we begin by introducing the fundamental concepts and background of the self-attention mechanism. Next, we provide a comprehensive overview of recent top-performing ViT methods describing in terms of strength and weakness, computational cost as well as training and testing dataset. We thoroughly compare the performance of various ViT algorithms and most representative CNN methods on popular benchmark datasets. Finally, we explore some limitations with insightful observations and provide further research direction. The project page along with the collections of papers are available at //github.com/khawar512/ViT-Survey
Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows. This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs, a subfield of trustworthy ML, combining the perspectives of Natural Language Processing and Security. Prior work has shown that even safety-aligned LLMs (via instruction tuning and reinforcement learning through human feedback) can be susceptible to adversarial attacks, which exploit weaknesses and mislead AI systems, as evidenced by the prevalence of `jailbreak' attacks on models like ChatGPT and Bard. In this survey, we first provide an overview of large language models, describe their safety alignment, and categorize existing research based on various learning structures: textual-only attacks, multi-modal attacks, and additional attack methods specifically targeting complex systems, such as federated learning or multi-agent systems. We also offer comprehensive remarks on works that focus on the fundamental sources of vulnerabilities and potential defenses. To make this field more accessible to newcomers, we present a systematic review of existing works, a structured typology of adversarial attack concepts, and additional resources, including slides for presentations on related topics at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL'24).
Despite the growing interest in ML-guided EDA tools from RTL to GDSII, there are no standard datasets or prototypical learning tasks defined for the EDA problem domain. Experience from the computer vision community suggests that such datasets are crucial to spur further progress in ML for EDA. Here we describe our experience curating two large-scale, high-quality datasets for Verilog code generation and logic synthesis. The first, VeriGen, is a dataset of Verilog code collected from GitHub and Verilog textbooks. The second, OpenABC-D, is a large-scale, labeled dataset designed to aid ML for logic synthesis tasks. The dataset consists of 870,000 And-Inverter-Graphs (AIGs) produced from 1500 synthesis runs on a large number of open-source hardware projects. In this paper we will discuss challenges in curating, maintaining and growing the size and scale of these datasets. We will also touch upon questions of dataset quality and security, and the use of novel data augmentation tools that are tailored for the hardware domain.
Anomaly detection requires detecting abnormal samples in large unlabeled datasets. While progress in deep learning and the advent of foundation models has produced powerful unsupervised anomaly detection methods, their deployment in practice is often hindered by the lack of labeled data -- without it, the detection accuracy of an anomaly detector cannot be evaluated reliably. In this work, we propose a general-purpose framework for evaluating image-based anomaly detectors with synthetically generated validation data. Our method assumes access to a small support set of normal images which are processed with a pre-trained diffusion model (our proposed method requires no training or fine-tuning) to produce synthetic anomalies. When mixed with normal samples from the support set, the synthetic anomalies create detection tasks that compose a validation framework for anomaly detection evaluation and model selection. In an extensive empirical study, ranging from natural images to industrial applications, we find that our synthetic validation framework selects the same models and hyper-parameters as selection with a ground-truth validation set. In addition, we find that prompts selected by our method for CLIP-based anomaly detection outperforms all other prompt selection strategies, and leads to the overall best detection accuracy, even on the challenging MVTec-AD dataset.
Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of a hypothetical LARge Cache processor (LARC), fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a broad set of proxy-applications and benchmarks, we aim to reveal how HPC CPU performance will evolve, and conclude an average boost of 9.56x for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design.
Recent research has observed that in machine learning optimization, gradient descent (GD) often operates at the edge of stability (EoS) [Cohen, et al., 2021], where the stepsizes are set to be large, resulting in non-monotonic losses induced by the GD iterates. This paper studies the convergence and implicit bias of constant-stepsize GD for logistic regression on linearly separable data in the EoS regime. Despite the presence of local oscillations, we prove that the logistic loss can be minimized by GD with \emph{any} constant stepsize over a long time scale. Furthermore, we prove that with \emph{any} constant stepsize, the GD iterates tend to infinity when projected to a max-margin direction (the hard-margin SVM direction) and converge to a fixed vector that minimizes a strongly convex potential when projected to the orthogonal complement of the max-margin direction. In contrast, we also show that in the EoS regime, GD iterates may diverge catastrophically under the exponential loss, highlighting the superiority of the logistic loss. These theoretical findings are in line with numerical simulations and complement existing theories on the convergence and implicit bias of GD for logistic regression, which are only applicable when the stepsizes are sufficiently small.
Large Language Models (LLMs), like ChatGPT, are fundamentally tools trained on vast data, reflecting diverse societal impressions. This paper aims to investigate LLMs' self-perceived bias concerning indigeneity when simulating scenarios of indigenous people performing various roles. Through generating and analyzing multiple scenarios, this work offers a unique perspective on how technology perceives and potentially amplifies societal biases related to indigeneity in social computing. The findings offer insights into the broader implications of indigeneity in critical computing.
The Self-Sovereign Identity (SSI) is a decentralized paradigm enabling full control over the data used to build and prove the identity. In Internet of Things networks with security requirements, the Self-Sovereign Identity can play a key role and bring benefits with respect to centralized identity solutions. The challenge is to make the SSI compatible with resource-constraint IoT networks. In line with this objective, the paper proposes and discusses an alternative (mutual) authentication process for IoT nodes under the same administration domain. The main idea is to combine the Decentralized IDentifier (DID)-based verification of private key ownership with the verification of a proof that the DID belongs to an evolving trusted set. The solution is built around the proof of membership notion. The paper analyzes two membership solutions, a novel solution designed by the Authors based on Merkle trees and a second one based on the adaptation of Boneh, Boyen and Shacham (BBS) group signature scheme. The paper concludes with a performance estimation and a comparative analysis.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.