亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In deep learning, classification tasks are formalized as optimization problems often solved via the minimization of the cross-entropy. However, recent advancements in the design of objective functions allow the usage of the $f$-divergence to generalize the formulation of the optimization problem for classification. We adopt a Bayesian perspective and formulate the classification task as a maximum a posteriori probability problem. We propose a class of objective functions based on the variational representation of the $f$-divergence. Furthermore, driven by the challenge of improving the state-of-the-art approach, we propose a bottom-up method that leads us to the formulation of an objective function corresponding to a novel $f$-divergence referred to as shifted log (SL). We theoretically analyze the objective functions proposed and numerically test them in three application scenarios: toy examples, image datasets, and signal detection/decoding problems. The analyzed scenarios demonstrate the effectiveness of the proposed approach and that the SL divergence achieves the highest classification accuracy in almost all the considered cases.

相關內容

我們給定x,函數都會輸出一個f(X),這個輸出的f(X)與真實值Y可能是相同的,也可能是不同的,為了表示擬合的好壞,就用一個函數來度量擬合的程度。這個函數就稱為損失函數(loss function),或者叫代價函數(cost function)

For deep learning, size is power. Massive neural nets trained on broad data for a spectrum of tasks are at the forefront of artificial intelligence. These large pre-trained models or Jacks of All Trades (JATs), when fine-tuned for downstream tasks, are gaining importance in driving deep learning advancements. However, environments with tight resource constraints, changing objectives and intentions, or varied task requirements, could limit the real-world utility of a singular JAT. Hence, in tandem with current trends towards building increasingly large JATs, this paper conducts an initial exploration into concepts underlying the creation of a diverse set of compact machine learning model sets. Composed of many smaller and specialized models, the Set of Sets is formulated to simultaneously fulfil many task settings and environmental conditions. A means to arrive at such a set tractably in one pass of a neuroevolutionary multitasking algorithm is presented for the first time, bringing us closer to models that are collectively Masters of All Trades.

Fair supervised learning algorithms assigning labels with little dependence on a sensitive attribute have attracted great attention in the machine learning community. While the demographic parity (DP) notion has been frequently used to measure a model's fairness in training fair classifiers, several studies in the literature suggest potential impacts of enforcing DP in fair learning algorithms. In this work, we analytically study the effect of standard DP-based regularization methods on the conditional distribution of the predicted label given the sensitive attribute. Our analysis shows that an imbalanced training dataset with a non-uniform distribution of the sensitive attribute could lead to a classification rule biased toward the sensitive attribute outcome holding the majority of training data. To control such inductive biases in DP-based fair learning, we propose a sensitive attribute-based distributionally robust optimization (SA-DRO) method improving robustness against the marginal distribution of the sensitive attribute. Finally, we present several numerical results on the application of DP-based learning methods to standard centralized and distributed learning problems. The empirical findings support our theoretical results on the inductive biases in DP-based fair learning algorithms and the debiasing effects of the proposed SA-DRO method.

Training the linear prediction (LP) operator end-to-end for audio synthesis in modern deep learning frameworks is slow due to its recursive formulation. In addition, frame-wise approximation as an acceleration method cannot generalise well to test time conditions where the LP is computed sample-wise. Efficient differentiable sample-wise LP for end-to-end training is the key to removing this barrier. We generalise the efficient time-invariant LP implementation from the GOLF vocoder to time-varying cases. Combining this with the classic source-filter model, we show that the improved GOLF learns LP coefficients and reconstructs the voice better than its frame-wise counterparts. Moreover, in our listening test, synthesised outputs from GOLF scored higher in quality ratings than the state-of-the-art differentiable WORLD vocoder.

Data, algorithms, and arithmetic power are the three foundational conditions for deep learning to be effective in the application domain. Data is the focus for developing deep learning algorithms. In practical engineering applications, some data are affected by the conditions under which more data cannot be obtained or the cost of obtaining data is too high, resulting in smaller data sets (generally several hundred to several thousand) and data sizes that are far smaller than the size of large data sets (tens of thousands). The above two methods are based on the original dataset to generate, in the case of insufficient data volume of the original data may not reflect all the real environment, such as the real environment of the light, silhouette and other information, if the amount of data is not enough, it is difficult to use a simple transformation or neural network generative model to generate the required data. The research in this paper firstly analyses the key points of the data enhancement technology of graph neural network, and at the same time introduces the composition foundation of graph neural network in depth, on the basis of which the data enhancement technology of graph neural network is optimized and analysed.

In the scenario-based evaluation of machine learning models, a key problem is how to construct test datasets that represent various scenarios. The methodology proposed in this paper is to construct a benchmark and attach metadata to each test case. Then a test system can be constructed with test morphisms that filter the test cases based on metadata to form a dataset. The paper demonstrates this methodology with large language models for code generation. A benchmark called ScenEval is constructed from problems in textbooks, an online tutorial website and Stack Overflow. Filtering by scenario is demonstrated and the test sets are used to evaluate ChatGPT for Java code generation. Our experiments found that the performance of ChatGPT decreases with the complexity of the coding task. It is weakest for advanced topics like multi-threading, data structure algorithms and recursive methods. The Java code generated by ChatGPT tends to be much shorter than reference solution in terms of number of lines, while it is more likely to be more complex in both cyclomatic and cognitive complexity metrics, if the generated code is correct. However, the generated code is more likely to be less complex than the reference solution if the code is incorrect.

Modern machine learning models are sensitive to the manipulation of both the training data (poisoning attacks) and inference data (adversarial examples). Recognizing this issue, the community has developed many empirical defenses against both attacks and, more recently, provable certification methods against inference-time attacks. However, such guarantees are still largely lacking for training-time attacks. In this work, we present FullCert, the first end-to-end certifier with sound, deterministic bounds, which proves robustness against both training-time and inference-time attacks. We first bound all possible perturbations an adversary can make to the training data under the considered threat model. Using these constraints, we bound the perturbations' influence on the model's parameters. Finally, we bound the impact of these parameter changes on the model's prediction, resulting in joint robustness guarantees against poisoning and adversarial examples. To facilitate this novel certification paradigm, we combine our theoretical work with a new open-source library BoundFlow, which enables model training on bounded datasets. We experimentally demonstrate FullCert's feasibility on two different datasets.

The landscape of deep learning has vastly expanded the frontiers of source code analysis, particularly through the utilization of structural representations such as Abstract Syntax Trees (ASTs). While these methodologies have demonstrated effectiveness in classification tasks, their efficacy in regression applications, such as execution time prediction from source code, remains underexplored. This paper endeavours to decode the behaviour of tree-based neural network models in the context of such regression challenges. We extend the application of established models--tree-based Convolutional Neural Networks (CNNs), Code2Vec, and Transformer-based methods--to predict the execution time of source code by parsing it to an AST. Our comparative analysis reveals that while these models are benchmarks in code representation, they exhibit limitations when tasked with regression. To address these deficiencies, we propose a novel dual-transformer approach that operates on both source code tokens and AST representations, employing cross-attention mechanisms to enhance interpretability between the two domains. Furthermore, we explore the adaptation of Graph Neural Networks (GNNs) to this tree-based problem, theorizing the inherent compatibility due to the graphical nature of ASTs. Empirical evaluations on real-world datasets showcase that our dual-transformer model outperforms all other tree-based neural networks and the GNN-based models. Moreover, our proposed dual transformer demonstrates remarkable adaptability and robust performance across diverse datasets.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

北京阿比特科技有限公司