亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robotic harvesting has the potential to positively impact agricultural productivity, reduce costs, improve food quality, enhance sustainability, and to address labor shortage. In the rapidly advancing field of agricultural robotics, the necessity of training robots in a virtual environment has become essential. Generating training data to automatize the underlying computer vision tasks such as image segmentation, object detection and classification, also heavily relies on such virtual environments as synthetic data is often required to overcome the shortage and lack of variety of real data sets. However, physics engines commonly employed within the robotics community, such as ODE, Simbody, Bullet, and DART, primarily support motion and collision interaction of rigid bodies. This inherent limitation hinders experimentation and progress in handling non-rigid objects such as plants and crops. In this contribution, we present a plugin for the Gazebo simulation platform based on Cosserat rods to model plant motion. It enables the simulation of plants and their interaction with the environment. We demonstrate that, using our plugin, users can conduct harvesting simulations in Gazebo by simulating a robotic arm picking fruits and achieve results comparable to real-world experiments.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · MoDELS · 論文 · Learning · 模糊邏輯 ·
2024 年 3 月 17 日

Causality has become a fundamental approach for explaining the relationships between events, phenomena, and outcomes in various fields of study. It has invaded various fields and applications, such as medicine, healthcare, economics, finance, fraud detection, cybersecurity, education, public policy, recommender systems, anomaly detection, robotics, control, sociology, marketing, and advertising. In this paper, we survey its development over the past five decades, shedding light on the differences between causality and other approaches, as well as the preconditions for using it. Furthermore, the paper illustrates how causality interacts with new approaches such as Artificial Intelligence (AI), Generative AI (GAI), Machine and Deep Learning, Reinforcement Learning (RL), and Fuzzy Logic. We study the impact of causality on various fields, its contribution, and its interaction with state-of-the-art approaches. Additionally, the paper exemplifies the trustworthiness and explainability of causality models. We offer several ways to evaluate causality models and discuss future directions.

ReachBot, a proposed robotic platform, employs extendable booms as limbs for mobility in challenging environments, such as martian caves. When attached to the environment, ReachBot acts as a parallel robot, with reconfiguration driven by the ability to detach and re-place the booms. This ability enables manipulation-focused scientific objectives: for instance, through operating tools, or handling and transporting samples. To achieve these capabilities, we develop a two-part solution, optimizing for robustness against task uncertainty and stochastic failure modes. First, we present a mixed-integer stance planner to determine the positioning of ReachBot's booms to maximize the task wrench space about the nominal point(s). Second, we present a convex tension planner to determine boom tensions for the desired task wrenches, accounting for the probabilistic nature of microspine grasping. We demonstrate improvements in key robustness metrics from the field of dexterous manipulation, and show a large increase in the volume of the manipulation workspace. Finally, we employ Monte-Carlo simulation to validate the robustness of these methods, demonstrating good performance across a range of randomized tasks and environments, and generalization to cable-driven morphologies. We make our code available at our project webpage, //stanfordasl.github.io/reachbot_manipulation/

During the energy transition, the significance of collaborative management among institutions is rising, confronting challenges posed by data privacy concerns. Prevailing research on distributed approaches, as an alternative to centralized management, often lacks numerical convergence guarantees or is limited to single-machine numerical simulation. To address this, we present a distributed approach for solving AC Optimal Power Flow (OPF) problems within a geographically distributed environment. This involves integrating the energy system Co-Simulation (eCoSim) module in the eASiMOV framework with the convergence-guaranteed distributed optimization algorithm, i.e., the Augmented Lagrangian based Alternating Direction Inexact Newton method (ALADIN). Comprehensive evaluations across multiple system scenarios reveal a marginal performance slowdown compared to the centralized approach and the distributed approach executed on single machines -- a justified trade-off for enhanced data privacy. This investigation serves as empirical validation of the successful execution of distributed AC OPF within a geographically distributed environment, highlighting potential directions for future research.

In precision agriculture, the detection and recognition of insects play an essential role in the ability of crops to grow healthy and produce a high-quality yield. The current machine vision model requires a large volume of data to achieve high performance. However, there are approximately 5.5 million different insect species in the world. None of the existing insect datasets can cover even a fraction of them due to varying geographic locations and acquisition costs. In this paper, we introduce a novel "Insect-1M" dataset, a game-changing resource poised to revolutionize insect-related foundation model training. Covering a vast spectrum of insect species, our dataset, including 1 million images with dense identification labels of taxonomy hierarchy and insect descriptions, offers a panoramic view of entomology, enabling foundation models to comprehend visual and semantic information about insects like never before. Then, to efficiently establish an Insect Foundation Model, we develop a micro-feature self-supervised learning method with a Patch-wise Relevant Attention mechanism capable of discerning the subtle differences among insect images. In addition, we introduce Description Consistency loss to improve micro-feature modeling via insect descriptions. Through our experiments, we illustrate the effectiveness of our proposed approach in insect modeling and achieve State-of-the-Art performance on standard benchmarks of insect-related tasks. Our Insect Foundation Model and Dataset promise to empower the next generation of insect-related vision models, bringing them closer to the ultimate goal of precision agriculture.

Optimization-based approaches are widely employed to generate optimal robot motions while considering various constraints, such as robot dynamics, collision avoidance, and physical limitations. It is crucial to efficiently solve the optimization problems in practice, yet achieving rapid computations remains a great challenge for optimization-based approaches with nonlinear constraints. In this paper, we propose a geometric projector for dynamic obstacle avoidance based on velocity obstacle (GeoPro-VO) by leveraging the projection feature of the velocity cone set represented by VO. Furthermore, with the proposed GeoPro-VO and the augmented Lagrangian spectral projected gradient descent (ALSPG) algorithm, we transform an initial mixed integer nonlinear programming problem (MINLP) in the form of constrained model predictive control (MPC) into a sub-optimization problem and solve it efficiently. Numerical simulations are conducted to validate the fast computing speed of our approach and its capability for reliable dynamic obstacle avoidance.

Opinion diffusion is a crucial phenomenon in social networks, often underlying the way in which a collective of agents develops a consensus on relevant decisions. The voter model is a well-known theoretical model to study opinion spreading in social networks and structured populations. Its simplest version assumes that an updating agent will adopt the opinion of a neighboring agent chosen at random. The model allows us to study, for example, the probability that a certain opinion will fixate into a consensus opinion, as well as the expected time it takes for a consensus opinion to emerge. Standard voter models are oblivious to the opinions held by the agents involved in the opinion adoption process. We propose and study a context-dependent opinion spreading process on an arbitrary social graph, in which the probability that an agent abandons opinion $a$ in favor of opinion $b$ depends on both $a$ and $b$. We discuss the relations of the model with existing voter models and then derive theoretical results for both the fixation probability and the expected consensus time for two opinions, for both the synchronous and the asynchronous update models.

Rapid advances in perception have enabled large pre-trained models to be used out of the box for processing high-dimensional, noisy, and partial observations of the world into rich geometric representations (e.g., occupancy predictions). However, safe integration of these models onto robots remains challenging due to a lack of reliable performance in unfamiliar environments. In this work, we present a framework for rigorously quantifying the uncertainty of pre-trained perception models for occupancy prediction in order to provide end-to-end statistical safety assurances for navigation. We build on techniques from conformal prediction for producing a calibrated perception system that lightly processes the outputs of a pre-trained model while ensuring generalization to novel environments and robustness to distribution shifts in states when perceptual outputs are used in conjunction with a planner. The calibrated system can be used in combination with any safe planner to provide an end-to-end statistical assurance on safety in a new environment with a user-specified threshold $1-\epsilon$. We evaluate the resulting approach - which we refer to as Perceive with Confidence (PwC) - with experiments in simulation and on hardware where a quadruped robot navigates through indoor environments containing objects unseen during training or calibration. These experiments validate the safety assurances provided by PwC and demonstrate significant improvements in empirical safety rates compared to baselines.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Spectral clustering is a leading and popular technique in unsupervised data analysis. Two of its major limitations are scalability and generalization of the spectral embedding (i.e., out-of-sample-extension). In this paper we introduce a deep learning approach to spectral clustering that overcomes the above shortcomings. Our network, which we call SpectralNet, learns a map that embeds input data points into the eigenspace of their associated graph Laplacian matrix and subsequently clusters them. We train SpectralNet using a procedure that involves constrained stochastic optimization. Stochastic optimization allows it to scale to large datasets, while the constraints, which are implemented using a special-purpose output layer, allow us to keep the network output orthogonal. Moreover, the map learned by SpectralNet naturally generalizes the spectral embedding to unseen data points. To further improve the quality of the clustering, we replace the standard pairwise Gaussian affinities with affinities leaned from unlabeled data using a Siamese network. Additional improvement can be achieved by applying the network to code representations produced, e.g., by standard autoencoders. Our end-to-end learning procedure is fully unsupervised. In addition, we apply VC dimension theory to derive a lower bound on the size of SpectralNet. State-of-the-art clustering results are reported on the Reuters dataset. Our implementation is publicly available at //github.com/kstant0725/SpectralNet .

北京阿比特科技有限公司