亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

3D Gaussian splatting models, as a novel explicit 3D representation, have been applied in many domains recently, such as explicit geometric editing and geometry generation. Progress has been rapid. However, due to their mixed scales and cluttered shapes, 3D Gaussian splatting models can produce a blurred or needle-like effect near the surface. At the same time, 3D Gaussian splatting models tend to flatten large untextured regions, yielding a very sparse point cloud. These problems are caused by the non-uniform nature of 3D Gaussian splatting models, so in this paper, we propose a new 3D Gaussian splitting algorithm, which can produce a more uniform and surface-bounded 3D Gaussian splatting model. Our algorithm splits an $N$-dimensional Gaussian into two N-dimensional Gaussians. It ensures consistency of mathematical characteristics and similarity of appearance, allowing resulting 3D Gaussian splatting models to be more uniform and a better fit to the underlying surface, and thus more suitable for explicit editing, point cloud extraction and other tasks. Meanwhile, our 3D Gaussian splitting approach has a very simple closed-form solution, making it readily applicable to any 3D Gaussian model.

相關內容

3D是英文(wen)“Three Dimensions”的(de)簡稱,中文(wen)是指(zhi)三(san)維、三(san)個維度、三(san)個坐(zuo)標,即有(you)長(chang)、有(you)寬、有(you)高,換句話說,就是立體的(de),是相對于只有(you)長(chang)和寬的(de)平(ping)面(mian)(2D)而言。

Search Result Explanation (SeRE) aims to improve search sessions' effectiveness and efficiency by helping users interpret documents' relevance. Existing works mostly focus on factual explanation, i.e. to find/generate supporting evidence about documents' relevance to search queries. However, research in cognitive sciences has shown that human explanations are contrastive i.e. people explain an observed event using some counterfactual events; such explanations reduce cognitive load and provide actionable insights. Though already proven effective in machine learning and NLP communities, there lacks a strict formulation on how counterfactual explanations should be defined and structured, in the context of web search. In this paper, we first discuss the possible formulation of counterfactual explanations in the IR context. Next, we formulate a suite of desiderata for counterfactual explanation in SeRE task and corresponding automatic metrics. With this desiderata, we propose a method named \textbf{C}ounter\textbf{F}actual \textbf{E}diting for Search Research \textbf{E}xplanation (\textbf{CFE2}). CFE2 provides pairwise counterfactual explanations for document pairs within a search engine result page. Our experiments on five public search datasets demonstrate that CFE2 can significantly outperform baselines in both automatic metrics and human evaluations.

Graph neural networks have emerged as a specialized branch of deep learning, designed to address problems where pairwise relations between objects are crucial. Recent advancements utilize graph convolutional neural networks to extract features within graph structures. Despite promising results, these methods face challenges in real-world applications due to sparse features, resulting in inefficient resource utilization. Recent studies draw inspiration from the mammalian brain and employ spiking neural networks to model and learn graph structures. However, these approaches are limited to traditional Von Neumann-based computing systems, which still face hardware inefficiencies. In this study, we present a fully neuromorphic implementation of spiking graph neural networks designed for Loihi 2. We optimize network parameters using Lava Bayesian Optimization, a novel hyperparameter optimization system compatible with neuromorphic computing architectures. We showcase the performance benefits of combining neuromorphic Bayesian optimization with our approach for citation graph classification using fixed-precision spiking neurons. Our results demonstrate the capability of integer-precision, Loihi 2 compatible spiking neural networks in performing citation graph classification with comparable accuracy to existing floating point implementations.

Inefficient data management has been the Achilles heel of blockchain-based decentralized applications (dApps). An off-chain storage layer, which lies between the application and the blockchain layers, can improve space efficiency and data availability with erasure codes and decentralized maintenance. This paper presents two fundamental components of such storage layer designed and implemented for the IPFS network. The IPFS Community is a component built on top of the IPFS network that encodes and decodes data before uploading to the network. Since data is encoded with alpha entanglement codes, the solution requires less storage space than the native IPFS solution which replicates data by pinning content with the IPFS Cluster. To detect and repair failures in a timely manner, we introduce the monitoring and repair component. This novel component is activated by any node and distributes the load of repairs among various nodes. These two components are implemented as pluggable modules, and can, therefore, be easily migrated to other distributed file systems by adjusting the connector component.

While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.

Invariant risk minimization (IRM) has recently emerged as a promising alternative for domain generalization. Nevertheless, the loss function is difficult to optimize for nonlinear classifiers and the original optimization objective could fail when pseudo-invariant features and geometric skews exist. Inspired by IRM, in this paper we propose a novel formulation for domain generalization, dubbed invariant information bottleneck (IIB). IIB aims at minimizing invariant risks for nonlinear classifiers and simultaneously mitigating the impact of pseudo-invariant features and geometric skews. Specifically, we first present a novel formulation for invariant causal prediction via mutual information. Then we adopt the variational formulation of the mutual information to develop a tractable loss function for nonlinear classifiers. To overcome the failure modes of IRM, we propose to minimize the mutual information between the inputs and the corresponding representations. IIB significantly outperforms IRM on synthetic datasets, where the pseudo-invariant features and geometric skews occur, showing the effectiveness of proposed formulation in overcoming failure modes of IRM. Furthermore, experiments on DomainBed show that IIB outperforms $13$ baselines by $0.9\%$ on average across $7$ real datasets.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

北京阿比特科技有限公司