亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus. Our results rely on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reconstruct the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableaux method is sound and complete for timed transition systems.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Control systems often need to satisfy strict safety requirements. Safety index provides a handy way to evaluate the safety level of the system and derive the resulting safe control policies. However, designing safety index functions under control limits is difficult and requires a great amount of expert knowledge. This paper proposes a framework for synthesizing the safety index for general control systems using sum-of-squares programming. Our approach is to show that ensuring the non-emptiness of safe control on the safe set boundary is equivalent to a local manifold positiveness problem. We then prove that this problem is equivalent to sum-of-squares programming via the Positivstellensatz of algebraic geometry. We validate the proposed method on robot arms with different degrees of freedom and ground vehicles. The results show that the synthesized safety index guarantees safety and our method is effective even in high-dimensional robot systems.

We analyze the finite element discretization of distributed elliptic optimal control problems with variable energy regularization, where the usual $L^2(\Omega)$ norm regularization term with a constant regularization parameter $\varrho$ is replaced by a suitable representation of the energy norm in $H^{-1}(\Omega)$ involving a variable, mesh-dependent regularization parameter $\varrho(x)$. It turns out that the error between the computed finite element state $\widetilde{u}_{\varrho h}$ and the desired state $\bar{u}$ (target) is optimal in the $L^2(\Omega)$ norm provided that $\varrho(x)$ behaves like the local mesh size squared. This is especially important when adaptive meshes are used in order to approximate discontinuous target functions. The adaptive scheme can be driven by the computable and localizable error norm $\| \widetilde{u}_{\varrho h} - \bar{u}\|_{L^2(\Omega)}$ between the finite element state $\widetilde{u}_{\varrho h}$ and the target $\bar{u}$. The numerical results not only illustrate our theoretical findings, but also show that the iterative solvers for the discretized reduced optimality system are very efficient and robust.

We study the complexity of classical constraint satisfaction problems on a 2D grid. Specifically, we consider the complexity of function versions of such problems, with the additional restriction that the constraints are translationally invariant, namely, the variables are located at the vertices of a 2D grid and the constraint between every pair of adjacent variables is the same in each dimension. The only input to the problem is thus the size of the grid. This problem is equivalent to one of the most interesting problems in classical physics, namely, computing the lowest energy of a classical system of particles on the grid. We provide a tight characterization of the complexity of this problem, and show that it is complete for the class $FP^{NEXP}$. Gottesman and Irani (FOCS 2009) also studied classical translationally-invariant constraint satisfaction problems; they show that the problem of deciding whether the cost of the optimal solution is below a given threshold is NEXP-complete. Our result is thus a strengthening of their result from the decision version to the function version of the problem. Our result can also be viewed as a generalization to the translationally invariant setting, of Krentel's famous result from 1988, showing that the function version of SAT is complete for the class $FP^{NP}$. An essential ingredient in the proof is a study of the complexity of a gapped variant of the problem. We show that it is NEXP-hard to approximate the cost of the optimal assignment to within an additive error of $\Omega(N^{1/4})$, for an $N \times N$ grid. To the best of our knowledge, no gapped result is known for CSPs on the grid, even in the non-translationally invariant case. As a byproduct of our results, we also show that a decision version of the optimization problem which asks whether the cost of the optimal assignment is odd or even is also complete for $P^{NEXP}$.

Both in academic and industry-based research, online evaluation methods are seen as the golden standard for interactive applications like recommendation systems. Naturally, the reason for this is that we can directly measure utility metrics that rely on interventions, being the recommendations that are being shown to users. Nevertheless, online evaluation methods are costly for a number of reasons, and a clear need remains for reliable offline evaluation procedures. In industry, offline metrics are often used as a first-line evaluation to generate promising candidate models to evaluate online. In academic work, limited access to online systems makes offline metrics the de facto approach to validating novel methods. Two classes of offline metrics exist: proxy-based methods, and counterfactual methods. The first class is often poorly correlated with the online metrics we care about, and the latter class only provides theoretical guarantees under assumptions that cannot be fulfilled in real-world environments. Here, we make the case that simulation-based comparisons provide ways forward beyond offline metrics, and argue that they are a preferable means of evaluation.

The Strong Exponential Time Hypothesis (SETH) asserts that for every $\varepsilon>0$ there exists $k$ such that $k$-SAT requires time $(2-\varepsilon)^n$. The field of fine-grained complexity has leveraged SETH to prove quite tight conditional lower bounds for dozens of problems in various domains and complexity classes, including Edit Distance, Graph Diameter, Hitting Set, Independent Set, and Orthogonal Vectors. Yet, it has been repeatedly asked in the literature whether SETH-hardness results can be proven for other fundamental problems such as Hamiltonian Path, Independent Set, Chromatic Number, MAX-$k$-SAT, and Set Cover. In this paper, we show that fine-grained reductions implying even $\lambda^n$-hardness of these problems from SETH for any $\lambda>1$, would imply new circuit lower bounds: super-linear lower bounds for Boolean series-parallel circuits or polynomial lower bounds for arithmetic circuits (each of which is a four-decade open question). We also extend this barrier result to the class of parameterized problems. Namely, for every $\lambda>1$ we conditionally rule out fine-grained reductions implying SETH-based lower bounds of $\lambda^k$ for a number of problems parameterized by the solution size $k$. Our main technical tool is a new concept called polynomial formulations. In particular, we show that many problems can be represented by relatively succinct low-degree polynomials, and that any problem with such a representation cannot be proven SETH-hard (without proving new circuit lower bounds).

In this paper, we consider a structurally damped elastic equation under hinged boundary conditions. Fully-discrete numerical approximation schemes are generated for the null controllability of these parabolic-like PDEs. We mainly use finite element method (FEM) and finite difference method (FDM) approximations to show that the null controllers being approximated via FEM and FDM exhibit exactly the same asymptotics of the associated minimal energy function. For this, we appeal to the theory originally given by R. Triggiani [20] for construction of null controllers of ODE systems. These null controllers are also amenable to our numerical implementation in which we discuss the aspects of FEM and FDM numerical approximations and compare both methodologies. We justify our theoretical results with the numerical experiments given for both approximation schemes.

In this research note, I derive explicit dynamical systems for language within an acquisition-driven framework (Niyogi \& Berwick, 1997; Niyogi, 2006) assuming that children/learners follow the Tolerance Principle (Yang, 2016) to determine whether a rule is productive during the process of language acquisition. I consider different theoretical parameters such as population size (finite vs. infinite) and the number of previous generations that provide learners with data. Multiple simulations of the dynamics obtained here and applications to diacrhonic language data are in preparation, so they are not included in this first note.

For the first time, a nonlinear interface problem on an unbounded domain with nonmonotone set-valued transmission conditions is analyzed. The investigated problem involves a nonlinear monotone partial differential equation in the interior domain and the Laplacian in the exterior domain. Such a scalar interface problem models nonmonotone frictional contact of elastic infinite media. The variational formulation of the interface problem leads to a hemivariational inequality, which lives on the unbounded domain, and so cannot be treated numerically in a direct way. By boundary integral methods the problem is transformed and a novel hemivariational inequality (HVI) is obtained that lives on the interior domain and on the coupling boundary, only. Thus for discretization the coupling of finite elements and boundary elements is the method of choice. In addition smoothing techniques of nondifferentiable optimization are adapted and the nonsmooth part in the HVI is regularized. Thus we reduce the original variational problem to a finite dimensional problem that can be solved by standard optimization tools. We establish not only convergence results for the total approximation procedure, but also an asymptotic error estimate for the regularized HVI.

We investigate $L_2$ boosting in the context of kernel regression. Kernel smoothers, in general, lack appealing traits like symmetry and positive definiteness, which are critical not only for understanding theoretical aspects but also for achieving good practical performance. We consider a projection-based smoother (Huang and Chen, 2008) that is symmetric, positive definite, and shrinking. Theoretical results based on the orthonormal decomposition of the smoother reveal additional insights into the boosting algorithm. In our asymptotic framework, we may replace the full-rank smoother with a low-rank approximation. We demonstrate that the smoother's low-rank ($d(n)$) is bounded above by $O(h^{-1})$, where $h$ is the bandwidth. Our numerical findings show that, in terms of prediction accuracy, low-rank smoothers may outperform full-rank smoothers. Furthermore, we show that the boosting estimator with low-rank smoother achieves the optimal convergence rate. Finally, to improve the performance of the boosting algorithm in the presence of outliers, we propose a novel robustified boosting algorithm which can be used with any smoother discussed in the study. We investigate the numerical performance of the proposed approaches using simulations and a real-world case.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

北京阿比特科技有限公司