The Multidepot Capacitated Vehicle Routing Problem (MCVRP) is a well-known variant of the classic Capacitated Vehicle Routing Problem (CVRP), where we need to route capacitated vehicles located in multiple depots to serve customers' demand such that each vehicle must return to the depot it starts, and the total traveling distance is minimized. There are three variants of MCVRP according to the property of the demand: unit-demand, splittable and unsplittable. We study approximation algorithms for $k$-MCVRP in metric graphs where $k$ is the capacity of each vehicle, and all three versions are APX-hard for any constant $k\geq 3$. Previously, Li and Simchi-Levi proposed a $(2\alpha+1-\alpha/k)$-approximation algorithm for splittable and unit-demand $k$-MCVRP and a $(2\alpha+2-2\alpha/k)$-approximation algorithm for unsplittable $k$-MCVRP, where $\alpha=3/2-10^{-36}$ is the current best approximation ratio for metric TSP. Harks et al. further improved the ratio to 4 for the unsplittable case. We give a $(4-1/1500)$-approximation algorithm for unit-demand and splittable $k$-MCVRP, and a $(4-1/50000)$-approximation algorithm for unsplittable $k$-MCVRP. Furthermore, we give a $(3+\ln2-\max\{\Theta(1/\sqrt{k}),1/9000\})$-approximation algorithm for splittable and unit-demand $k$-MCVRP, and a $(3+\ln2-\Theta(1/\sqrt{k}))$-approximation algorithm for unsplittable $k$-MCVRP under the assumption that the capacity $k$ is a fixed constant. Our results are based on recent progress in approximating CVRP.
This paper introduces a novel method called Distance-Based Independence Screening for Canonical Analysis (DISCA) that performs simultaneous dimension reduction for a pair of random variables by optimizing the distance covariance (dCov). dCov is a statistic first proposed by Sz\'ekely et al. [2009] for independence testing. Compared with sufficient dimension reduction (SDR) and canonical correlation analysis (CCA)-based approaches, DISCA is a model-free approach that does not impose dimensional or distributional restrictions on variables and is more sensitive to nonlinear relationships. Theoretically, we establish a non-asymptotic error bound to provide a guarantee of our method's performance. Numerically, DISCA performs comparable to or better than other state-of-the-art algorithms and is computationally faster. All codes of our DISCA method can be found on GitHub https : //github.com/Yijin911/DISCA.git, including an R package named DISCA.
Ultrasound Localization Microscopy can resolve the microvascular bed down to a few micrometers. To achieve such performance microbubble contrast agents must perfuse the entire microvascular network. Microbubbles are then located individually and tracked over time to sample individual vessels, typically over hundreds of thousands of images. To overcome the fundamental limit of diffraction and achieve a dense reconstruction of the network, low microbubble concentrations must be used, which lead to acquisitions lasting several minutes. Conventional processing pipelines are currently unable to deal with interference from multiple nearby microbubbles, further reducing achievable concentrations. This work overcomes this problem by proposing a Deep Learning approach to recover dense vascular networks from ultrasound acquisitions with high microbubble concentrations. A realistic mouse brain microvascular network, segmented from 2-photon microscopy, was used to train a three-dimensional convolutional neural network based on a V-net architecture. Ultrasound data sets from multiple microbubbles flowing through the microvascular network were simulated and used as ground truth to train the 3D CNN to track microbubbles. The 3D-CNN approach was validated in silico using a subset of the data and in vivo on a rat brain acquisition. In silico, the CNN reconstructed vascular networks with higher precision (81%) than a conventional ULM framework (70%). In vivo, the CNN could resolve micro vessels as small as 10 $\mu$m with an increase in resolution when compared against a conventional approach.
This paper introduces a Factor Augmented Sparse Throughput (FAST) model that utilizes both latent factors and sparse idiosyncratic components for nonparametric regression. The FAST model bridges factor models on one end and sparse nonparametric models on the other end. It encompasses structured nonparametric models such as factor augmented additive models and sparse low-dimensional nonparametric interaction models and covers the cases where the covariates do not admit factor structures. Via diversified projections as estimation of latent factor space, we employ truncated deep ReLU networks to nonparametric factor regression without regularization and to a more general FAST model using nonconvex regularization, resulting in factor augmented regression using neural network (FAR-NN) and FAST-NN estimators respectively. We show that FAR-NN and FAST-NN estimators adapt to the unknown low-dimensional structure using hierarchical composition models in nonasymptotic minimax rates. We also study statistical learning for the factor augmented sparse additive model using a more specific neural network architecture. Our results are applicable to the weak dependent cases without factor structures. In proving the main technical result for FAST-NN, we establish a new deep ReLU network approximation result that contributes to the foundation of neural network theory. Our theory and methods are further supported by simulation studies and an application to macroeconomic data.
The Euler Characteristic Transform (ECT) has proven to be a powerful representation, combining geometrical and topological characteristics of shapes and graphs. However, the ECT was hitherto unable to learn task-specific representations. We overcome this issue and develop a novel computational layer that enables learning the ECT in an end-to-end fashion. Our method DECT is fast and computationally efficient, while exhibiting performance on a par with more complex models in both graph and point cloud classification tasks. Moreover, we show that this seemingly unexpressive statistic still provides the same topological expressivity as more complex topological deep learning layers provide.
The Implicit Factorization Problem was first introduced by May and Ritzenhofen at PKC'09. This problem aims to factorize two RSA moduli $N_1=p_1q_1$ and $N_2=p_2q_2$ when their prime factors share a certain number of least significant bits (LSBs). They proposed a lattice-based algorithm to tackle this problem and extended it to cover $k>2$ RSA moduli. Since then, several variations of the Implicit Factorization Problem have been studied, including the cases where $p_1$ and $p_2$ share some most significant bits (MSBs), middle bits, or both MSBs and LSBs at the same position. In this paper, we explore a more general case of the Implicit Factorization Problem, where the shared bits are located at different and unknown positions for different primes. We propose a lattice-based algorithm and analyze its efficiency under certain conditions. We also present experimental results to support our analysis.
Language Models (LMs) achieve substantial language capabilities when finetuned using Reinforcement Learning with Human Feedback (RLHF). However, RLHF is an unstable and data-hungry process that continually requires new high-quality LM-generated data for finetuning. We introduce Advantage-Leftover Lunch RL (A-LoL), a new class of offline policy gradient algorithms that enable RL training on any pre-existing data. By assuming the entire LM output sequence as a single action, A-LoL allows incorporating sequence-level classifiers or human-designed scoring functions as rewards. Subsequently, by using LM's internal sequence-level value estimate, A-LoL filters negative advantage (low-quality) data points during training, making it resilient to noise. Overall, A-LoL is an easy-to-implement LM training recipe that is sample-efficient and stable. We demonstrate the effectiveness of A-LoL and its variants with a set of four different language generation tasks. We compare against both online RL (PPO) and recent preference-based (DPO, PRO) and reward-based (GOLD) offline RL baselines. On the commonly-used RLHF benchmark, Helpful and Harmless Assistant (HHA), LMs trained with A-LoL methods achieve the highest diversity while also being rated more safe and helpful than baselines according to humans. Additionally, in the remaining three tasks, A-LoL could optimize multiple distinct reward functions even when using noisy or suboptimal training data. We also release our experimental code. //github.com/abaheti95/LoL-RL
Pre-trained Text-to-Text Language Models (LMs), such as T5 or BART yield promising results in the Knowledge Graph Question Answering (KGQA) task. However, the capacity of the models is limited and the quality decreases for questions with less popular entities. In this paper, we present a novel approach which works on top of the pre-trained Text-to-Text QA system to address this issue. Our simple yet effective method performs filtering and re-ranking of generated candidates based on their types derived from Wikidata "instance_of" property.
Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.
This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan