亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a high-dimensional dynamic pricing problem under non-stationarity, where a firm sells products to $T$ sequentially arriving consumers that behave according to an unknown demand model with potential changes at unknown times. The demand model is assumed to be a high-dimensional generalized linear model (GLM), allowing for a feature vector in $\mathbb R^d$ that encodes products and consumer information. To achieve optimal revenue (i.e., least regret), the firm needs to learn and exploit the unknown GLMs while monitoring for potential change-points. To tackle such a problem, we first design a novel penalized likelihood-based online change-point detection algorithm for high-dimensional GLMs, which is the first algorithm in the change-point literature that achieves optimal minimax localization error rate for high-dimensional GLMs. A change-point detection assisted dynamic pricing (CPDP) policy is further proposed and achieves a near-optimal regret of order $O(s\sqrt{\Upsilon_T T}\log(Td))$, where $s$ is the sparsity level and $\Upsilon_T$ is the number of change-points. This regret is accompanied with a minimax lower bound, demonstrating the optimality of CPDP (up to logarithmic factors). In particular, the optimality with respect to $\Upsilon_T$ is seen for the first time in the dynamic pricing literature, and is achieved via a novel accelerated exploration mechanism. Extensive simulation experiments and a real data application on online lending illustrate the efficiency of the proposed policy and the importance and practical value of handling non-stationarity in dynamic pricing.

相關內容

Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.

Graph Transformer is gaining increasing attention in the field of machine learning and has demonstrated state-of-the-art performance on benchmarks for graph representation learning. However, as current implementations of Graph Transformer primarily focus on learning representations of small-scale graphs, the quadratic complexity of the global self-attention mechanism presents a challenge for full-batch training when applied to larger graphs. Additionally, conventional sampling-based methods fail to capture necessary high-level contextual information, resulting in a significant loss of performance. In this paper, we introduce the Hierarchical Scalable Graph Transformer (HSGT) as a solution to these challenges. HSGT successfully scales the Transformer architecture to node representation learning tasks on large-scale graphs, while maintaining high performance. By utilizing graph hierarchies constructed through coarsening techniques, HSGT efficiently updates and stores multi-scale information in node embeddings at different levels. Together with sampling-based training methods, HSGT effectively captures and aggregates multi-level information on the hierarchical graph using only Transformer blocks. Empirical evaluations demonstrate that HSGT achieves state-of-the-art performance on large-scale benchmarks with graphs containing millions of nodes with high efficiency.

The Blahut-Arimoto (BA) algorithm has played a fundamental role in the numerical computation of rate-distortion (RD) functions. This algorithm possesses a desirable monotonic convergence property by alternatively minimizing its Lagrangian with a fixed multiplier. In this paper, we propose a novel modification of the BA algorithm, letting the multiplier be updated in each iteration via a one-dimensional root-finding step with respect to a monotonic univariate function, which can be efficiently implemented by Newton's method. This allows the multiplier to be updated in a flexible and efficient manner, overcoming a major drawback of the original BA algorithm wherein the multiplier is fixed throughout iterations. Consequently, the modified algorithm is capable of directly computing the RD function for a given target distortion, without exploring the entire RD curve as in the original BA algorithm. A theoretical analysis shows that the modified algorithm still converges to the RD function and the convergence rate is $\Theta(1/n)$, where $n$ denotes the number of iterations. Numerical experiments demonstrate that the modified algorithm directly computes the RD function with a given target distortion, and it significantly accelerates the original BA algorithm.

Although there is an extensive literature on the eigenvalues of high-dimensional sample covariance matrices, much of it is specialized to independent components (IC) models -- in which observations are represented as linear transformations of random vectors with independent entries. By contrast, less is known in the context of elliptical models, which violate the independence structure of IC models and exhibit quite different statistical phenomena. In particular, very little is known about the scope of bootstrap methods for doing inference with spectral statistics in high-dimensional elliptical models. To fill this gap, we show how a bootstrap approach developed previously for IC models can be extended to handle the different properties of elliptical models. Within this setting, our main theoretical result guarantees that the proposed method consistently approximates the distributions of linear spectral statistics, which play a fundamental role in multivariate analysis. We also provide empirical results showing that the proposed method performs well for a variety of nonlinear spectral statistics.

We study high-dimensional robust statistics tasks in the streaming model. A recent line of work obtained computationally efficient algorithms for a range of high-dimensional robust estimation tasks. Unfortunately, all previous algorithms require storing the entire dataset, incurring memory at least quadratic in the dimension. In this work, we develop the first efficient streaming algorithms for high-dimensional robust statistics with near-optimal memory requirements (up to logarithmic factors). Our main result is for the task of high-dimensional robust mean estimation in (a strengthening of) Huber's contamination model. We give an efficient single-pass streaming algorithm for this task with near-optimal error guarantees and space complexity nearly-linear in the dimension. As a corollary, we obtain streaming algorithms with near-optimal space complexity for several more complex tasks, including robust covariance estimation, robust regression, and more generally robust stochastic optimization.

Graph neural networks are often used to model interacting dynamical systems since they gracefully scale to systems with a varying and high number of agents. While there has been much progress made for deterministic interacting systems, modeling is much more challenging for stochastic systems in which one is interested in obtaining a predictive distribution over future trajectories. Existing methods are either computationally slow since they rely on Monte Carlo sampling or make simplifying assumptions such that the predictive distribution is unimodal. In this work, we present a deep state-space model which employs graph neural networks in order to model the underlying interacting dynamical system. The predictive distribution is multimodal and has the form of a Gaussian mixture model, where the moments of the Gaussian components can be computed via deterministic moment matching rules. Our moment matching scheme can be exploited for sample-free inference, leading to more efficient and stable training compared to Monte Carlo alternatives. Furthermore, we propose structured approximations to the covariance matrices of the Gaussian components in order to scale up to systems with many agents. We benchmark our novel framework on two challenging autonomous driving datasets. Both confirm the benefits of our method compared to state-of-the-art methods. We further demonstrate the usefulness of our individual contributions in a carefully designed ablation study and provide a detailed runtime analysis of our proposed covariance approximations. Finally, we empirically demonstrate the generalization ability of our method by evaluating its performance on unseen scenarios.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.

Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.

We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.

北京阿比特科技有限公司