亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The angular synchronization problem aims to accurately estimate (up to a constant additive phase) a set of unknown angles $\theta_1, \dots, \theta_n\in[0, 2\pi)$ from $m$ noisy measurements of their offsets $\theta_i-\theta_j \;\mbox{mod} \; 2\pi.$ Applications include, for example, sensor network localization, phase retrieval, and distributed clock synchronization. An extension of the problem to the heterogeneous setting (dubbed $k$-synchronization) is to estimate $k$ groups of angles simultaneously, given noisy observations (with unknown group assignment) from each group. Existing methods for angular synchronization usually perform poorly in high-noise regimes, which are common in applications. In this paper, we leverage neural networks for the angular synchronization problem, and its heterogeneous extension, by proposing GNNSync, a theoretically-grounded end-to-end trainable framework using directed graph neural networks. In addition, new loss functions are devised to encode synchronization objectives. Experimental results on extensive data sets demonstrate that GNNSync attains competitive, and often superior, performance against a comprehensive set of baselines for the angular synchronization problem and its extension, validating the robustness of GNNSync even at high noise levels.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We present a multiscale mixed finite element method for solving second order elliptic equations with general $L^{\infty}$-coefficients arising from flow in highly heterogeneous porous media. Our approach is based on a multiscale spectral generalized finite element method (MS-GFEM) and exploits the superior local mass conservation properties of mixed finite elements. Following the MS-GFEM framework, optimal local approximation spaces are built for the velocity field by solving local eigenvalue problems over generalized harmonic spaces. The resulting global velocity space is then enriched suitably to ensure inf-sup stability. We develop the mixed MS-GFEM for both continuous and discrete formulations, with Raviart-Thomas based mixed finite elements underlying the discrete method. Exponential convergence with respect to local degrees of freedom is proven at both the continuous and discrete levels. Numerical results are presented to support the theory and to validate the proposed method.

We propose a novel differentially private algorithm for online federated learning that employs temporally correlated noise to improve the utility while ensuring the privacy of the continuously released models. To address challenges stemming from DP noise and local updates with streaming noniid data, we develop a perturbed iterate analysis to control the impact of the DP noise on the utility. Moreover, we demonstrate how the drift errors from local updates can be effectively managed under a quasi-strong convexity condition. Subject to an $(\epsilon, \delta)$-DP budget, we establish a dynamic regret bound over the entire time horizon that quantifies the impact of key parameters and the intensity of changes in dynamic environments. Numerical experiments validate the efficacy of the proposed algorithm.

We propose a new metric for robot state estimation based on the recently introduced $\text{SE}_2(3)$ Lie group definition. Our metric is related to prior metrics for SLAM but explicitly takes into account the linear velocity of the state estimate, improving over current pose-based trajectory analysis. This has the benefit of providing a single, quantitative metric to evaluate state estimation algorithms against, while being compatible with existing tools and libraries. Since ground truth data generally consists of pose data from motion capture systems, we also propose an approach to compute the ground truth linear velocity based on polynomial interpolation. Using Chebyshev interpolation and a pseudospectral parameterization, we can accurately estimate the ground truth linear velocity of the trajectory in an optimal fashion with best approximation error. We demonstrate how this approach performs on multiple robotic platforms where accurate state estimation is vital, and compare it to alternative approaches such as finite differences. The pseudospectral parameterization also provides a means of trajectory data compression as an additional benefit. Experimental results show our method provides a valid and accurate means of comparing state estimation systems, which is also easy to interpret and report.

The question of characterizing the (finite) representable relation algebras in a ``nice" way is open. The class $\mathbf{RRA}$ is known to be not finitely axiomatizable in first-order logic. Nevertheless, it is conjectured that ``almost all'' finite relation algebras are representable. All finite relation algebras with three or fewer atoms are representable. So one may ask, Over what cardinalities of sets are they representable? This question was answered completely by Andr\'eka and Maddux (``Representations for small relation algebras,'' \emph{Notre Dame J. Form. Log.}, \textbf{35} (1994)); they determine the spectrum of every finite relation algebra with three or fewer atoms. In the present paper, we restrict attention to cyclic group representations, and completely determine the cyclic group spectrum for all seven symmetric integral relation algebras on three atoms. We find that in some instances, the spectrum and cyclic spectrum agree; in other instances, the spectra disagree for finitely many $n$; finally, for other instances, the spectra disagree for infinitely many $n$. The proofs employ constructions, SAT solvers, and the probabilistic method.

We consider the aeroelastic simulation of flexible mechanical structures submerged in subsonic fluid flows at low Mach numbers. The nonlinear kinematics of flexible bodies are described in the total Lagrangian formulation and discretized by finite elements. The aerodynamic loads are computed using the unsteady vortex-lattice method wherein a free wake is tracked over time. Each implicit time step in the dynamic simulation then requires solving a nonlinear equation system in the structural variables with additional aerodynamic load terms. Our focus here is on the efficient numerical solution of this system by accelerating the Newton algorithm. The particular structure of the aeroelastic nonlinear system suggests the structural derivative as an approximation to the full derivative in the linear Newton system. We investigate and compare two promising algorithms based in this approximation, a quasi-Newton type algorithm and a novel inexact Newton algorithm. Numerical experiments are performed on a flexible plate and on a wind turbine. Our computational results show that the approximation can indeed accelerate the Newton algorithm substantially. Surprisingly, the theoretically preferable inexact Newton algorithm is much slower than the quasi-Newton algorithm, which motivates further research to speed up derivative evaluations.

The use of neural networks to approximate partial differential equations (PDEs) has gained significant attention in recent years. However, the approximation of PDEs with localised phenomena, e.g., sharp gradients and singularities, remains a challenge, due to ill-defined cost functions in terms of pointwise residual sampling or poor numerical integration. In this work, we introduce $h$-adaptive finite element interpolated neural networks. The method relies on the interpolation of a neural network onto a finite element space that is gradually adapted to the solution during the training process to equidistribute a posteriori error indicator. The use of adaptive interpolation is essential in preserving the non-linear approximation capabilities of the neural networks to effectively tackle problems with localised features. The training relies on a gradient-based optimisation of a loss function based on the (dual) norm of the finite element residual of the interpolated neural network. Automatic mesh adaptation (i.e., refinement and coarsening) is performed based on a posteriori error indicators till a certain level of accuracy is reached. The proposed methodology can be applied to indefinite and nonsymmetric problems. We carry out a detailed numerical analysis of the scheme and prove several a priori error estimates, depending on the expressiveness of the neural network compared to the interpolation mesh. Our numerical experiments confirm the effectiveness of the method in capturing sharp gradients and singularities for forward PDE problems, both in 2D and 3D scenarios. We also show that the proposed preconditioning strategy (i.e., using a dual residual norm of the residual as a cost function) enhances training robustness and accelerates convergence.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Graph Neural Networks (GNN) is an emerging field for learning on non-Euclidean data. Recently, there has been increased interest in designing GNN that scales to large graphs. Most existing methods use "graph sampling" or "layer-wise sampling" techniques to reduce training time. However, these methods still suffer from degrading performance and scalability problems when applying to graphs with billions of edges. This paper presents GBP, a scalable GNN that utilizes a localized bidirectional propagation process from both the feature vectors and the training/testing nodes. Theoretical analysis shows that GBP is the first method that achieves sub-linear time complexity for both the precomputation and the training phases. An extensive empirical study demonstrates that GBP achieves state-of-the-art performance with significantly less training/testing time. Most notably, GBP can deliver superior performance on a graph with over 60 million nodes and 1.8 billion edges in less than half an hour on a single machine.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司