亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Network slicing provides introduces customized and agile network deployment for managing different service types for various verticals under the same infrastructure. To cater to the dynamic service requirements of these verticals and meet the required quality-of-service (QoS) mentioned in the service-level agreement (SLA), network slices need to be isolated through dedicated elements and resources. Additionally, allocated resources to these slices need to be continuously monitored and intelligently managed. This enables immediate detection and correction of any SLA violation to support automated service assurance in a closed-loop fashion. By reducing human intervention, intelligent and closed-loop resource management reduces the cost of offering flexible services. Resource management in a network shared among verticals (potentially administered by different providers), would be further facilitated through open and standardized interfaces. Open radio access network (O-RAN) is perhaps the most promising RAN architecture that inherits all the aforementioned features, namely intelligence, open and standard interfaces, and closed control loop. Inspired by this, in this article we provide a closed-loop and intelligent resource provisioning scheme for O-RAN slicing to prevent SLA violations. In order to maintain realism, a real-world dataset of a large operator is used to train a learning solution for optimizing resource utilization in the proposed closed-loop service automation process. Moreover, the deployment architecture and the corresponding flow that are cognizant of the O-RAN requirements are also discussed.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Human visual attention is a complex phenomenon that has been studied for decades. Within it, the particular problem of scanpath prediction poses a challenge, particularly due to the inter- and intra-observer variability, among other reasons. Besides, most existing approaches to scanpath prediction have focused on optimizing the prediction of a gaze point given the previous ones. In this work, we present a probabilistic time-evolving approach to scanpath prediction, based on Bayesian deep learning. We optimize our model using a novel spatio-temporal loss function based on a combination of Kullback-Leibler divergence and dynamic time warping, jointly considering the spatial and temporal dimensions of scanpaths. Our scanpath prediction framework yields results that outperform those of current state-of-the-art approaches, and are almost on par with the human baseline, suggesting that our model is able to generate scanpaths whose behavior closely resembles those of the real ones.

Emerging distributed cloud architectures, e.g., fog and mobile edge computing, are playing an increasingly important role in the efficient delivery of real-time stream-processing applications such as augmented reality, multiplayer gaming, and industrial automation. While such applications require processed streams to be shared and simultaneously consumed by multiple users/devices, existing technologies lack efficient mechanisms to deal with their inherent multicast nature, leading to unnecessary traffic redundancy and network congestion. In this paper, we establish a unified framework for distributed cloud network control with generalized (mixed-cast) traffic flows that allows optimizing the distributed execution of the required packet processing, forwarding, and replication operations. We first characterize the enlarged multicast network stability region under the new control framework (with respect to its unicast counterpart). We then design a novel queuing system that allows scheduling data packets according to their current destination sets, and leverage Lyapunov drift-plus-penalty theory to develop the first fully decentralized, throughput- and cost-optimal algorithm for multicast cloud network flow control. Numerical experiments validate analytical results and demonstrate the performance gain of the proposed design over existing cloud network control techniques.

Numerical solution of heterogeneous Helmholtz problems presents various computational challenges, with descriptive theory remaining out of reach for many popular approaches. Robustness and scalability are key for practical and reliable solvers in large-scale applications, especially for large wave number problems. In this work we explore the use of a GenEO-type coarse space to build a two-level additive Schwarz method applicable to highly indefinite Helmholtz problems. Through a range of numerical tests on a 2D model problem, discretised by finite elements on pollution-free meshes, we observe robust convergence, iteration counts that do not increase with the wave number, and good scalability of our approach. We further provide results showing a favourable comparison with the DtN coarse space. Our numerical study shows promise that our solver methodology can be effective for challenging heterogeneous applications.

Fuzzing is one of the most effective approaches to finding software flaws. However, applying it to microcontroller firmware incurs many challenges. For example, rehosting-based solutions cannot accurately model peripheral behaviors and thus cannot be used to fuzz the corresponding driver code. In this work, we present $\mu$AFL, a hardware-in-the-loop approach to fuzzing microcontroller firmware. It leverages debugging tools in existing embedded system development to construct an AFL-compatible fuzzing framework. Specifically, we use the debug dongle to bridge the fuzzing environment on the PC and the target firmware on the microcontroller device. To collect code coverage information without costly code instrumentation, $\mu$AFL relies on the ARM ETM hardware debugging feature, which transparently collects the instruction trace and streams the results to the PC. However, the raw ETM data is obscure and needs enormous computing resources to recover the actual instruction flow. We therefore propose an alternative representation of code coverage, which retains the same path sensitivity as the original AFL algorithm, but can directly work on the raw ETM data without matching them with disassembled instructions. To further reduce the workload, we use the DWT hardware feature to selectively collect runtime information of interest. We evaluated $\mu$AFL on two real evaluation boards from two major vendors: NXP and STMicroelectronics. With our prototype, we discovered ten zero-day bugs in the driver code shipped with the SDK of STMicroelectronics and three zero-day bugs in the SDK of NXP. Eight CVEs have been allocated for them. Considering the wide adoption of vendor SDKs in real products, our results are alarming.

Attention mechanisms, primarily designed to capture pairwise correlations between words, have become the backbone of machine learning, expanding beyond natural language processing into other domains. This growth in adaptation comes at the cost of prohibitively large memory requirements and computational complexity, especially at higher number of input elements. This limitation is due to inherently limited data reuse opportunities and quadratic growth in memory footprints, leading to severe memory-boundedness and limited scalability of input elements. This work addresses these challenges by devising a tailored dataflow optimization, called FLAT, for attention mechanisms without altering their functionality. This dataflow processes costly attention operations through a unique fusion mechanism, transforming the memory footprint quadratic growth to merely a linear one. To realize the full potential of this bespoke mechanism, we propose a tiling approach to enhance the data reuse across attention operations. Our method both mitigates the off-chip bandwidth bottleneck as well as reduces the on-chip memory requirement. Across a diverse range of models, FLAT delivers 1.94x (1.76x) speedup and 49% and (42%) of energy savings compared to the state-of-the-art edge (cloud) accelerators with no customized dataflow optimization. Our evaluations demonstrate that state-of-the-art DNN dataflows applied to attention operations reach the efficiency limit for inputs above 512 elements. In contrast, FLAT unblocks transformer models for inputs with up to 64 K elements in edge and cloud accelerators.

Radio access network (RAN) slicing is an important pillar in cross-domain network slicing which covers RAN, edge, transport and core slicing. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) techniques have been widely applied for network management. However, most existing works do not take advantage of the knowledge transfer capability in ML. In this paper, we propose a deep transfer reinforcement learning (DTRL) scheme for joint radio and cache resource allocation to serve 5G RAN slicing. We first define a hierarchical architecture for the joint resource allocation. Then we propose two DTRL algorithms: Q-value-based deep transfer reinforcement learning (QDTRL) and action selection-based deep transfer reinforcement learning (ADTRL). In the proposed schemes, learner agents utilize expert agents' knowledge to improve their performance on target tasks. The proposed algorithms are compared with both the model-free exploration bonus deep Q-learning (EB-DQN) and the model-based priority proportional fairness and time-to-live (PPF-TTL) algorithms. Compared with EB-DQN, our proposed DTRL based method presents 21.4% lower delay for Ultra Reliable Low Latency Communications (URLLC) slice and 22.4% higher throughput for enhanced Mobile Broad Band (eMBB) slice, while achieving significantly faster convergence than EB-DQN. Moreover, 40.8% lower URLLC delay and 59.8% higher eMBB throughput are observed with respect to PPF-TTL.

Multi-camera vehicle tracking is one of the most complicated tasks in Computer Vision as it involves distinct tasks including Vehicle Detection, Tracking, and Re-identification. Despite the challenges, multi-camera vehicle tracking has immense potential in transportation applications including speed, volume, origin-destination (O-D), and routing data generation. Several recent works have addressed the multi-camera tracking problem. However, most of the effort has gone towards improving accuracy on high-quality benchmark datasets while disregarding lower camera resolutions, compression artifacts and the overwhelming amount of computational power and time needed to carry out this task on its edge and thus making it prohibitive for large-scale and real-time deployment. Therefore, in this work we shed light on practical issues that should be addressed for the design of a multi-camera tracking system to provide actionable and timely insights. Moreover, we propose a real-time city-scale multi-camera vehicle tracking system that compares favorably to computationally intensive alternatives and handles real-world, low-resolution CCTV instead of idealized and curated video streams. To show its effectiveness, in addition to integration into the Regional Integrated Transportation Information System (RITIS), we participated in the 2021 NVIDIA AI City multi-camera tracking challenge and our method is ranked among the top five performers on the public leaderboard.

Lane detection is a challenging task that requires predicting complex topology shapes of lane lines and distinguishing different types of lanes simultaneously. Earlier works follow a top-down roadmap to regress predefined anchors into various shapes of lane lines, which lacks enough flexibility to fit complex shapes of lanes due to the fixed anchor shapes. Lately, some works propose to formulate lane detection as a keypoint estimation problem to describe the shapes of lane lines more flexibly and gradually group adjacent keypoints belonging to the same lane line in a point-by-point manner, which is inefficient and time-consuming during postprocessing. In this paper, we propose a Global Association Network (GANet) to formulate the lane detection problem from a new perspective, where each keypoint is directly regressed to the starting point of the lane line instead of point-by-point extension. Concretely, the association of keypoints to their belonged lane line is conducted by predicting their offsets to the corresponding starting points of lanes globally without dependence on each other, which could be done in parallel to greatly improve efficiency. In addition, we further propose a Lane-aware Feature Aggregator (LFA), which adaptively captures the local correlations between adjacent keypoints to supplement local information to the global association. Extensive experiments on two popular lane detection benchmarks show that our method outperforms previous methods with F1 score of 79.63% on CULane and 97.71% on Tusimple dataset with high FPS. The code will be released at //github.com/Wolfwjs/GANet.

Recently, stemming from the rapid development of artificial intelligence, which has gained expansive success in pattern recognition, robotics, and bioinformatics, neuroscience is also gaining tremendous progress. A kind of spiking neural network with biological interpretability is gradually receiving wide attention, and this kind of neural network is also regarded as one of the directions toward general artificial intelligence. This review introduces the following sections, the biological background of spiking neurons and the theoretical basis, different neuronal models, the connectivity of neural circuits, the mainstream neural network learning mechanisms and network architectures, etc. This review hopes to attract different researchers and advance the development of brain-inspired intelligence and artificial intelligence.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

北京阿比特科技有限公司