In this study, the structural problems of the YOLOv5 model were analyzed emphatically. Based on the characteristics of fine defects in artificial leather, four innovative structures, namely DFP, IFF, AMP, and EOS, were designed. These advancements led to the proposal of a high-performance artificial leather fine defect detection model named YOLOD. YOLOD demonstrated outstanding performance on the artificial leather defect dataset, achieving an impressive increase of 11.7% - 13.5% in AP_50 compared to YOLOv5, along with a significant reduction of 5.2% - 7.2% in the error detection rate. Moreover, YOLOD also exhibited remarkable performance on the general MS-COCO dataset, with an increase of 0.4% - 2.6% in AP compared to YOLOv5, and a rise of 2.5% - 4.1% in AP_S compared to YOLOv5. These results demonstrate the superiority of YOLOD in both artificial leather defect detection and general object detection tasks, making it a highly efficient and effective model for real-world applications.
The problem of function approximation by neural dynamical systems has typically been approached in a top-down manner: Any continuous function can be approximated to an arbitrary accuracy by a sufficiently complex model with a given architecture. This can lead to high-complexity controls which are impractical in applications. In this paper, we take the opposite, constructive approach: We impose various structural restrictions on system dynamics and consequently characterize the class of functions that can be realized by such a system. The systems are implemented as a cascade interconnection of a neural stochastic differential equation (Neural SDE), a deterministic dynamical system, and a readout map. Both probabilistic and geometric (Lie-theoretic) methods are used to characterize the classes of functions realized by such systems.
We present a new method for two-material Lagrangian hydrodynamics, which combines the Shifted Interface Method (SIM) with a high-order Finite Element Method. Our approach relies on an exact (or sharp) material interface representation, that is, it uses the precise location of the material interface. The interface is represented by the zero level-set of a continuous high-order finite element function that moves with the material velocity. This strategy allows to evolve curved material interfaces inside curved elements. By reformulating the original interface problem over a surrogate (approximate) interface, located in proximity of the true interface, the SIM avoids cut cells and the associated problematic issues regarding implementation, numerical stability, and matrix conditioning. Accuracy is maintained by modifying the original interface conditions using Taylor expansions. We demonstrate the performance of the proposed algorithms on established numerical benchmarks in one, two and three dimensions.
We tackle classification based on brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple heads. The proposed network is a simple design that employs different heads involving graph convolutions focused on edges and nodes, capturing representations from the input data thoroughly. To test the ability of our model to extract complementary and representative features from brain connectivity data, we chose the task of sex classification. This quantifies the degree to which the connectome varies depending on the sex, which is important for improving our understanding of health and disease in both sexes. We show experiments on two publicly available datasets: PREVENT-AD (347 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.
We propose and analyze the application of statistical functional depth metrics for the selection of extreme scenarios in day-ahead grid planning. Our primary motivation is screening of probabilistic scenarios for realized load and renewable generation, in order to identify scenarios most relevant for operational risk mitigation. To handle the high-dimensionality of the scenarios across asset classes and intra-day periods, we employ functional measures of depth to sub-select outlying scenarios that are most likely to be the riskiest for the grid operation. We investigate a range of functional depth measures, as well as a range of operational risks, including load shedding, operational costs, reserves shortfall and variable renewable energy curtailment. The effectiveness of the proposed screening approach is demonstrated through a case study on the realistic Texas-7k grid.
We propose a Neighbourhood-Aware Differential Privacy (NADP) mechanism considering the neighbourhood of a word in a pretrained static word embedding space to determine the minimal amount of noise required to guarantee a specified privacy level. We first construct a nearest neighbour graph over the words using their embeddings, and factorise it into a set of connected components (i.e. neighbourhoods). We then separately apply different levels of Gaussian noise to the words in each neighbourhood, determined by the set of words in that neighbourhood. Experiments show that our proposed NADP mechanism consistently outperforms multiple previously proposed DP mechanisms such as Laplacian, Gaussian, and Mahalanobis in multiple downstream tasks, while guaranteeing higher levels of privacy.
Instance segmentation has witnessed promising advancements through deep neural network-based algorithms. However, these models often exhibit incorrect predictions with unwarranted confidence levels. Consequently, evaluating prediction uncertainty becomes critical for informed decision-making. Existing methods primarily focus on quantifying uncertainty in classification or regression tasks, lacking emphasis on instance segmentation. Our research addresses the challenge of estimating spatial certainty associated with the location of instances with star-convex shapes. Two distinct clustering approaches are evaluated which compute spatial and fractional certainty per instance employing samples by the Monte-Carlo Dropout or Deep Ensemble technique. Our study demonstrates that combining spatial and fractional certainty scores yields improved calibrated estimation over individual certainty scores. Notably, our experimental results show that the Deep Ensemble technique alongside our novel radial clustering approach proves to be an effective strategy. Our findings emphasize the significance of evaluating the calibration of estimated certainties for model reliability and decision-making.
In scene graph generation (SGG), learning with cross-entropy loss yields biased predictions owing to the severe imbalance in the distribution of the relationship labels in the dataset. Thus, this study proposes a method to generate scene graphs using optimal transport as a measure for comparing two probability distributions. We apply learning with the optimal transport loss, which reflects the similarity between the labels in terms of transportation cost, for predicate classification in SGG. In the proposed approach, the transportation cost of the optimal transport is defined using the similarity of words obtained from the pre-trained model. The experimental evaluation of the effectiveness demonstrates that the proposed method outperforms existing methods in terms of mean Recall@50 and 100. Furthermore, it improves the recall of the relationship labels scarcely available in the dataset.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.