Deepfake videos are becoming increasingly realistic, showing subtle tampering traces on facial areasthat vary between frames. Consequently, many existing Deepfake detection methods struggle to detect unknown domain Deepfake videos while accurately locating the tampered region. To address thislimitation, we propose Delocate, a novel Deepfake detection model that can both recognize andlocalize unknown domain Deepfake videos. Ourmethod consists of two stages named recoveringand localization. In the recovering stage, the modelrandomly masks regions of interest (ROIs) and reconstructs real faces without tampering traces, resulting in a relatively good recovery effect for realfaces and a poor recovery effect for fake faces. Inthe localization stage, the output of the recoveryphase and the forgery ground truth mask serve assupervision to guide the forgery localization process. This process strategically emphasizes the recovery phase of fake faces with poor recovery, facilitating the localization of tampered regions. Ourextensive experiments on four widely used benchmark datasets demonstrate that Delocate not onlyexcels in localizing tampered areas but also enhances cross-domain detection performance.
Adolescent peer relationships, essential for their development, are increasingly mediated by digital technologies. As this trend continues, wearable devices, especially smartwatches tailored for adolescents, are reshaping their socialization. In China, smartwatches like XTC have gained wide popularity, introducing unique features such as "Bump-to-Connect" and exclusive social platforms. Nonetheless, how these devices influence adolescents' peer experience remains unknown. Addressing this, we interviewed 18 Chinese adolescents (age: 11 -- 16), discovering a smartwatch-mediated social ecosystem. Our findings highlight the ice-breaking role of smartwatches in friendship initiation and their use for secret messaging with local peers. Within the online smartwatch community, peer status is determined by likes and visibility, leading to diverse pursuit activities (i.e., chu guanxi, jiazu, kuolie) and negative social dynamics. We discuss the core affordances of smartwatches and Chinese cultural factors that influence adolescent social behavior and offer implications for designing future wearables that responsibly and safely support adolescent socialization.
Semantic segmentation of remote sensing images is a challenging and hot issue due to the large amount of unlabeled data. Unsupervised domain adaptation (UDA) has proven to be advantageous in incorporating unclassified information from the target domain. However, independently fine-tuning UDA models on the source and target domains has a limited effect on the outcome. This paper proposes a hybrid training strategy as well as a novel dual-domain image fusion strategy that effectively utilizes the original image, transformation image, and intermediate domain information. Moreover, to enhance the precision of pseudo-labels, we present a pseudo-label region-specific weight strategy. The efficacy of our approach is substantiated by extensive benchmark experiments and ablation studies conducted on the ISPRS Vaihingen and Potsdam datasets.
Recently, video generation has achieved significant rapid development based on superior text-to-image generation techniques. In this work, we propose a high fidelity framework for image-to-video generation, named AtomoVideo. Based on multi-granularity image injection, we achieve higher fidelity of the generated video to the given image. In addition, thanks to high quality datasets and training strategies, we achieve greater motion intensity while maintaining superior temporal consistency and stability. Our architecture extends flexibly to the video frame prediction task, enabling long sequence prediction through iterative generation. Furthermore, due to the design of adapter training, our approach can be well combined with existing personalized models and controllable modules. By quantitatively and qualitatively evaluation, AtomoVideo achieves superior results compared to popular methods, more examples can be found on our project website: //atomo-video.github.io/.
Speech separation has recently made significant progress thanks to the fine-grained vision used in time-domain methods. However, several studies have shown that adopting Short-Time Fourier Transform (STFT) for feature extraction could be beneficial when encountering harsher conditions, such as noise or reverberation. Therefore, we propose a magnitude-conditioned time-domain framework, ConSep, to inherit the beneficial characteristics. The experiment shows that ConSep promotes performance in anechoic, noisy, and reverberant settings compared to two celebrated methods, SepFormer and Bi-Sep. Furthermore, we visualize the components of ConSep to strengthen the advantages and cohere with the actualities we have found in preliminary studies.
Recent breakthroughs in Large-scale language models (LLMs) have demonstrated impressive performance on various tasks. The immense sizes of LLMs have led to very high resource demand and cost for running the models. Though the models are largely served using uniform high-caliber GPUs nowadays, utilizing a heterogeneous cluster with a mix of available high- and low-capacity GPUs can potentially substantially reduce the serving cost. There is a lack of designs to support efficient LLM serving using a heterogeneous cluster, while the current solutions focus on model partition and uniform compression among homogeneous devices. This paper proposes LLM-PQ, a system that advocates adaptive model quantization and phase-aware partition to improve LLM serving efficiency on heterogeneous GPU clusters. We carefully decide on mixed-precision model quantization together with phase-aware model partition and micro-batch sizing in distributed LLM serving with an efficient algorithm, to greatly enhance inference throughput while fulfilling user-specified model quality targets. Extensive experiments on production inference workloads in 11 different clusters demonstrate that LLM-PQ achieves up to 2.88x (2.26x on average) throughput improvement in inference, showing great advantages over state-of-the-art works.
Vision research showed remarkable success in understanding our world, propelled by datasets of images and videos. Sensor data from radar, LiDAR and cameras supports research in robotics and autonomous driving for at least a decade. However, while visual sensors may fail in some conditions, sound has recently shown potential to complement sensor data. Simulated room impulse responses (RIR) in 3D apartment-models became a benchmark dataset for the community, fostering a range of audiovisual research. In simulation, depth is predictable from sound, by learning bat-like perception with a neural network. Concurrently, the same was achieved in reality by using RGB-D images and echoes of chirping sounds. Biomimicking bat perception is an exciting new direction but needs dedicated datasets to explore the potential. Therefore, we collected the BatVision dataset to provide large-scale echoes in complex real-world scenes to the community. We equipped a robot with a speaker to emit chirps and a binaural microphone to record their echoes. Synchronized RGB-D images from the same perspective provide visual labels of traversed spaces. We sampled modern US office spaces to historic French university grounds, indoor and outdoor with large architectural variety. This dataset will allow research on robot echolocation, general audio-visual tasks and sound ph{\ae}nomena unavailable in simulated data. We show promising results for audio-only depth prediction and show how state-of-the-art work developed for simulated data can also succeed on our dataset. Project page: //amandinebtto.github.io/Batvision-Dataset/
Document Visual Question Answering (DVQA) is a task that involves responding to queries based on the content of images. Existing work is limited to locating information within a single page and does not facilitate cross-page question-and-answer interaction. Furthermore, the token length limitation imposed on inputs to the model may lead to truncation of segments pertinent to the answer. In this study, we introduce a simple but effective methodology called CFRet-DVQA, which focuses on retrieval and efficient tuning to address this critical issue effectively. For that, we initially retrieve multiple segments from the document that correlate with the question at hand. Subsequently, we leverage the advanced reasoning abilities of the large language model (LLM), further augmenting its performance through instruction tuning. This approach enables the generation of answers that align with the style of the document labels. The experiments demonstrate that our methodology achieved state-of-the-art or competitive results with both single-page and multi-page documents in various fields.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.