亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern robots are stepping away from monolithic entities built using ad-hoc sensors and actuators, due to new technologies and communication paradigms, such as the Internet of Things (IoT) and the Robotic Operating System (ROS). Using such paradigms, robots can be built by acquiring heterogeneous standard devices and putting them in communication with each other. This approach brings high degrees of modularity, but it also yields uncertainty of providing cybersecurity assurances, and guarantees on the integrity of the embodiment. In this paper, we first illustrate how cyberattacks on different devices can have radically different consequences on the robot's ability to complete its tasks and preserve its embodiment. We also claim that modern robots should have self-awareness for what it concerns such aspects, and formulate the different characteristics that robots should integrate for doing so. Then, we show that achieving these propositions requires that robots possess at least three properties that conceptually link devices and tasks. Last, we reflect on how these three properties could be achieved in a larger conceptual framework.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

With recent advances in artificial intelligence (AI) and robotics, unmanned vehicle swarms have received great attention from both academia and industry due to their potential to provide services that are difficult and dangerous to perform by humans. However, learning and coordinating movements and actions for a large number of unmanned vehicles in complex and dynamic environments introduce significant challenges to conventional AI methods. Generative AI (GAI), with its capabilities in complex data feature extraction, transformation, and enhancement, offers great potential in solving these challenges of unmanned vehicle swarms. For that, this paper aims to provide a comprehensive survey on applications, challenges, and opportunities of GAI in unmanned vehicle swarms. Specifically, we first present an overview of unmanned vehicles and unmanned vehicle swarms as well as their use cases and existing issues. Then, an in-depth background of various GAI techniques together with their capabilities in enhancing unmanned vehicle swarms are provided. After that, we present a comprehensive review on the applications and challenges of GAI in unmanned vehicle swarms with various insights and discussions. Finally, we highlight open issues of GAI in unmanned vehicle swarms and discuss potential research directions.

Indoor autonomous driving testbeds have emerged to complement expensive outdoor testbeds and virtual simulations, offering scalable and cost-effective solutions for research in navigation, traffic optimization, and swarm intelligence. However, they often lack the robust sensing and computing infrastructure for advanced research. Addressing these limitations, we introduce the Indoor Connected Autonomous Testbed (ICAT), a platform that not only tackles the unique challenges of indoor autonomous driving but also innovates vehicle computing and V2X communication. Moreover, ICAT leverages digital twins through CARLA and SUMO simulations, facilitating both centralized and decentralized autonomy deployments.

Generative models can serve as surrogates for some real data sources by creating synthetic training datasets, but in doing so they may transfer biases to downstream tasks. We focus on protecting quality and diversity when generating synthetic training datasets. We propose quality-diversity generative sampling (QDGS), a framework for sampling data uniformly across a user-defined measure space, despite the data coming from a biased generator. QDGS is a model-agnostic framework that uses prompt guidance to optimize a quality objective across measures of diversity for synthetically generated data, without fine-tuning the generative model. Using balanced synthetic datasets generated by QDGS, we first debias classifiers trained on color-biased shape datasets as a proof-of-concept. By applying QDGS to facial data synthesis, we prompt for desired semantic concepts, such as skin tone and age, to create an intersectional dataset with a combined blend of visual features. Leveraging this balanced data for training classifiers improves fairness while maintaining accuracy on facial recognition benchmarks. Code available at: //github.com/Cylumn/qd-generative-sampling.

To enhance accuracy of robot state estimation, perception-aware (or active sensing) methods seek trajectories that minimize uncertainty. To this aim, one possibility is to seek trajectories that minimize the final covariance of an extended Kalman filter (EKF), w.r.t. its control inputs over a given horizon. However, this can be computationally demanding. In this article, we derive novel backpropagation analytical formulas for the derivatives of the final covariance of an EKF w.r.t. its inputs. We then leverage the obtained gradients as an enabling technology to derive perception-aware optimal motion plans. Simulations validate the approach, showcasing improvements in both estimation accuracy and execution time. Experimental results on a real large ground vehicle also support the method.

Large relational-event history data stemming from large networks are becoming increasingly available due to recent technological developments (e.g. digital communication, online databases, etc). This opens many new doors to learning about complex interaction behavior between actors in temporal social networks. The relational event model has become the gold standard for relational event history analysis. Currently, however, the main bottleneck to fit relational events models is of computational nature in the form of memory storage limitations and computational complexity. Relational event models are therefore mainly used for relatively small data sets while larger, more interesting datasets, including multilevel data structures and relational event data streams, cannot be analyzed on standard desktop computers. This paper addresses this problem by developing approximation algorithms based on meta-analysis methods that can fit relational event models significantly faster while avoiding the computational issues. In particular, meta-analytic approximations are proposed for analyzing streams of relational event data and multilevel relational event data and potentially of combinations thereof. The accuracy and the statistical properties of the methods are assessed using numerical simulations. Furthermore, real-world data are used to illustrate the potential of the methodology to study social interaction behavior in an organizational network and interaction behavior among political actors. The algorithms are implemented in a publicly available R package 'remx'.

Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.

The widespread use of ChatGPT and other emerging technology powered by generative artificial intelligence (GenAI) has drawn much attention to potential ethical issues, especially in high-stakes applications such as healthcare, but ethical discussions are yet to translate into operationalisable solutions. Furthermore, ongoing ethical discussions often neglect other types of GenAI that have been used to synthesise data (e.g., images) for research and practical purposes, which resolved some ethical issues and exposed others. We conduct a scoping review of ethical discussions on GenAI in healthcare to comprehensively analyse gaps in the current research, and further propose to reduce the gaps by developing a checklist for comprehensive assessment and transparent documentation of ethical discussions in GenAI research. The checklist can be readily integrated into the current peer review and publication system to enhance GenAI research, and may be used for ethics-related disclosures for GenAI-powered products, healthcare applications of such products and beyond.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

北京阿比特科技有限公司