亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The reuse and distribution of open-source software must be in compliance with its accompanying open-source license. In modern packaging ecosystems, maintaining such compliance is challenging because a package may have a complex multi-layered dependency graph with many packages, any of which may have an incompatible license. Although prior research finds that license incompatibilities are prevalent, empirical evidence is still scarce in some modern packaging ecosystems (e.g., PyPI). It also remains unclear how developers remediate the license incompatibilities in the dependency graphs of their packages (including direct and transitive dependencies), let alone any automated approaches. To bridge this gap, we conduct a large-scale empirical study of license incompatibilities and their remediation practices in the PyPI ecosystem. We find that 7.27% of the PyPI package releases have license incompatibilities and 61.3% of them are caused by transitive dependencies, causing challenges in their remediation; for remediation, developers can apply one of the five strategies: migration, removal, pinning versions, changing their own licenses, and negotiation. Inspired by our findings, we propose SILENCE, an SMT-solver-based approach to recommend license incompatibility remediations with minimal costs in package dependency graph. Our evaluation shows that the remediations proposed by SILENCE can match 19 historical real-world cases (except for migrations not covered by an existing knowledge base) and have been accepted by five popular PyPI packages whose developers were previously unaware of their license incompatibilities.

相關內容

Computing on encrypted data is a promising approach to reduce data security and privacy risks, with homomorphic encryption serving as a facilitator in achieving this goal. In this work, we accelerate homomorphic operations using the Processing-in- Memory (PIM) paradigm to mitigate the large memory capacity and frequent data movement requirements. Using a real-world PIM system, we accelerate the Brakerski-Fan-Vercauteren (BFV) scheme for homomorphic addition and multiplication. We evaluate the PIM implementations of these homomorphic operations with statistical workloads (arithmetic mean, variance, linear regression) and compare to CPU and GPU implementations. Our results demonstrate 50-100x speedup with a real PIM system (UPMEM) over the CPU and 2-15x over the GPU in vector addition. For vector multiplication, the real PIM system outperforms the CPU by 40-50x. However, it lags 10-15x behind the GPU due to the lack of native sufficiently wide multiplication support in the evaluated first-generation real PIM system. For mean, variance, and linear regression, the real PIM system performance improvements vary between 30x and 300x over the CPU and between 10x and 30x over the GPU, uncovering real PIM system trade-offs in terms of scalability of homomorphic operations for varying amounts of data. We plan to make our implementation open-source in the future.

Modern agile software projects are subject to constant change, making it essential to re-asses overall delay risk throughout the project life cycle. Existing effort estimation models are static and not able to incorporate changes occurring during project execution. In this paper, we propose a dynamic model for continuously predicting overall delay using delay patterns and Bayesian modeling. The model incorporates the context of the project phase and learns from changes in team performance over time. We apply the approach to real-world data from 4,040 epics and 270 teams at ING. An empirical evaluation of our approach and comparison to the state-of-the-art demonstrate significant improvements in predictive accuracy. The dynamic model consistently outperforms static approaches and the state-of-the-art, even during early project phases.

Open source software (OSS) vulnerabilities threaten the security of software systems that use OSS. Vulnerability databases provide valuable information (e.g., vulnerable version and patch) to mitigate OSS vulnerabilities. There arises a growing concern about the information quality of vulnerability databases. However, it is unclear what the quality of patches in existing vulnerability databases is; and existing manual or heuristic-based approaches for patch tracking are either too expensive or too specific to apply to all OSS vulnerabilities.

In the classical source coding problem, the compressed source is reconstructed at the decoder with respect to some distortion metric. Motivated by settings in which we are interested in more than simply reconstructing the compressed source, we investigate a single-shot compression problem where the decoder is tasked with reconstructing the original data as well as making inferences from it. Quality of inference and reconstruction is determined by a distortion criteria for each task. Given allowable distortion levels, we are interested in characterizing the probability of excess distortion. Modeling the joint inference and reconstruction problem as direct-indirect source coding one, we obtain lower and upper bounds for excess distortion probability. We specialize the converse bound and present a new easily computable achievability bound for the case where the distortion metric for reconstruction is logarithmic loss.

Large language models (large LMs) are increasingly trained on massive codebases and used to generate code. However, LMs lack awareness of security and are found to frequently produce unsafe code. This work studies the security of LMs along two important axes: (i) security hardening, which aims to enhance LMs' reliability in generating secure code, and (ii) adversarial testing, which seeks to evaluate LMs' security at an adversarial standpoint. We address both of these by formulating a new security task called controlled code generation. The task is parametric and takes as input a binary property to guide the LM to generate secure or unsafe code, while preserving the LM's capability of generating functionally correct code. We propose a novel learning-based approach called SVEN to solve this task. SVEN leverages property-specific continuous vectors to guide program generation towards the given property, without modifying the LM's weights. Our training procedure optimizes these continuous vectors by enforcing specialized loss terms on different regions of code, using a high-quality dataset carefully curated by us. Our extensive evaluation shows that SVEN is highly effective in achieving strong security control. For instance, a state-of-the-art CodeGen LM with 2.7B parameters generates secure code for 59.1% of the time. When we employ SVEN to perform security hardening (or adversarial testing) on this LM, the ratio is significantly boosted to 92.3% (or degraded to 36.8%). Importantly, SVEN closely matches the original LMs in functional correctness.

This paper presents a detailed evaluation of the efficiency of software-only techniques to mitigate SEU and SET in microprocessors. A set of well-known rules is presented and implemented automatically to transform an unprotected program into a hardened one. SEU and SET are injected in all sensitive areas of a MIPS-based microprocessor architecture. The efficiency of each rule and a combination of them are tested. Experimental results show the inefficiency of the control-flow techniques in detecting the majority of SEU and SET faults. Three effects of the non-detected faults are explained. The conclusions can lead designers in developing more efficient techniques to detect these types of faults.

A mobile manipulator often finds itself in an application where it needs to take a close-up view before performing a manipulation task. Named this as a coupled active perception and manipulation (CAPM) problem, we model the uncertainty in the perception process and devise a key state/task planning approach that considers reachability conditions as task constraints of both perception and manipulation tasks for the mobile platform. By minimizing the expected energy usage in the body key state planning while satisfying task constraints, our algorithm achieves the best balance between the task success rate and energy usage. We have implemented the algorithm and tested it in both simulation and physical experiments. The results have confirmed that our algorithm has a lower energy consumption compared to a two-stage decoupled approach, while still maintaining a success rate of 100\% for the task.

Commit message generation (CMG) is a challenging task in automated software engineering that aims to generate natural language descriptions of code changes for commits. Previous methods all start from the modified code snippets, outputting commit messages through template-based, retrieval-based, or learning-based models. While these methods can summarize what is modified from the perspective of code, they struggle to provide reasons for the commit. The correlation between commits and issues that could be a critical factor for generating rational commit messages is still unexplored. In this work, we delve into the correlation between commits and issues from the perspective of dataset and methodology. We construct the first dataset anchored on combining correlated commits and issues. The dataset consists of an unlabeled commit-issue parallel part and a labeled part in which each example is provided with human-annotated rational information in the issue. Furthermore, we propose \tool (\underline{Ex}traction, \underline{Gro}unding, \underline{Fi}ne-tuning), a novel paradigm that can introduce the correlation between commits and issues into the training phase of models. To evaluate whether it is effective, we perform comprehensive experiments with various state-of-the-art CMG models. The results show that compared with the original models, the performance of \tool-enhanced models is significantly improved.

We introduce RotateIt, a system that enables fingertip-based object rotation along multiple axes by leveraging multimodal sensory inputs. Our system is trained in simulation, where it has access to ground-truth object shapes and physical properties. Then we distill it to operate on realistic yet noisy simulated visuotactile and proprioceptive sensory inputs. These multimodal inputs are fused via a visuotactile transformer, enabling online inference of object shapes and physical properties during deployment. We show significant performance improvements over prior methods and the importance of visual and tactile sensing.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司