亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Closely related languages show linguistic similarities that allow speakers of one language to understand speakers of another language without having actively learned it. Mutual intelligibility varies in degree and is typically tested in psycholinguistic experiments. To study mutual intelligibility computationally, we propose a computer-assisted method using the Linear Discriminative Learner, a computational model developed to approximate the cognitive processes by which humans learn languages, which we expand with multilingual semantic vectors and multilingual sound classes. We test the model on cognate data from German, Dutch, and English, three closely related Germanic languages. We find that our model's comprehension accuracy depends on 1) the automatic trimming of inflections and 2) the language pair for which comprehension is tested. Our multilingual modelling approach does not only offer new methodological findings for automatic testing of mutual intelligibility across languages but also extends the use of Linear Discriminative Learning to multilingual settings.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 大語言模型 · MoDELS · Performer · Extensibility ·
2024 年 3 月 18 日

With ChatGPT under the spotlight, utilizing large language models (LLMs) to assist academic writing has drawn a significant amount of debate in the community. In this paper, we aim to present a comprehensive study of the detectability of ChatGPT-generated content within the academic literature, particularly focusing on the abstracts of scientific papers, to offer holistic support for the future development of LLM applications and policies in academia. Specifically, we first present GPABench2, a benchmarking dataset of over 2.8 million comparative samples of human-written, GPT-written, GPT-completed, and GPT-polished abstracts of scientific writing in computer science, physics, and humanities and social sciences. Second, we explore the methodology for detecting ChatGPT content. We start by examining the unsatisfactory performance of existing ChatGPT detecting tools and the challenges faced by human evaluators (including more than 240 researchers or students). We then test the hand-crafted linguistic features models as a baseline and develop a deep neural framework named CheckGPT to better capture the subtle and deep semantic and linguistic patterns in ChatGPT written literature. Last, we conduct comprehensive experiments to validate the proposed CheckGPT framework in each benchmarking task over different disciplines. To evaluate the detectability of ChatGPT content, we conduct extensive experiments on the transferability, prompt engineering, and robustness of CheckGPT.

The commercialization of large language models (LLMs) has led to the common practice of high-level API-only access to proprietary models. In this work, we show that even with a conservative assumption about the model architecture, it is possible to learn a surprisingly large amount of non-public information about an API-protected LLM from a relatively small number of API queries (e.g., costing under $1,000 for OpenAI's gpt-3.5-turbo). Our findings are centered on one key observation: most modern LLMs suffer from a softmax bottleneck, which restricts the model outputs to a linear subspace of the full output space. We show that this lends itself to a model image or a model signature which unlocks several capabilities with affordable cost: efficiently discovering the LLM's hidden size, obtaining full-vocabulary outputs, detecting and disambiguating different model updates, identifying the source LLM given a single full LLM output, and even estimating the output layer parameters. Our empirical investigations show the effectiveness of our methods, which allow us to estimate the embedding size of OpenAI's gpt-3.5-turbo to be about 4,096. Lastly, we discuss ways that LLM providers can guard against these attacks, as well as how these capabilities can be viewed as a feature (rather than a bug) by allowing for greater transparency and accountability.

Classification algorithms using Transformer architectures can be affected by the sequence length learning problem whenever observations from different classes have a different length distribution. This problem causes models to use sequence length as a predictive feature instead of relying on important textual information. Although most public datasets are not affected by this problem, privately owned corpora for fields such as medicine and insurance may carry this data bias. The exploitation of this sequence length feature poses challenges throughout the value chain as these machine learning models can be used in critical applications. In this paper, we empirically expose this problem and present approaches to minimize its impacts.

Large language models (LLMs) are complex artificial intelligence systems capable of understanding, generating and translating human language. They learn language patterns by analyzing large amounts of text data, allowing them to perform writing, conversation, summarizing and other language tasks. When LLMs process and generate large amounts of data, there is a risk of leaking sensitive information, which may threaten data privacy. This paper concentrates on elucidating the data privacy concerns associated with LLMs to foster a comprehensive understanding. Specifically, a thorough investigation is undertaken to delineate the spectrum of data privacy threats, encompassing both passive privacy leakage and active privacy attacks within LLMs. Subsequently, we conduct an assessment of the privacy protection mechanisms employed by LLMs at various stages, followed by a detailed examination of their efficacy and constraints. Finally, the discourse extends to delineate the challenges encountered and outline prospective directions for advancement in the realm of LLM privacy protection.

Although large language models (LLMs) have demonstrated impressive text generation capabilities, they are easily misled by the untruthful context provided by users or knowledge augmentation tools, thereby producing hallucinations. To alleviate the LLMs from being misled by untruthful information and take advantage of knowledge augmentation, we propose Truth-Aware Context Selection (TACS), a lightweight method to shield untruthful context from the inputs. TACS begins by performing truth detection on the input context, leveraging the parameterized knowledge within the LLM. Subsequently, it constructs a corresponding attention mask based on the truthfulness of each position, selecting the truthful context and discarding the untruthful context. Additionally, we introduce a new evaluation metric, Disturbance Adaption Rate, to further study the LLMs' ability to accept truthful information and resist untruthful information. Experimental results show that TACS can effectively filter information in context and significantly improve the overall quality of LLMs' responses when presented with misleading information.

Ensuring alignment of language models' outputs with human preferences is critical to guarantee a useful, safe, and pleasant user experience. Thus, human alignment has been extensively studied recently and several methods such as Reinforcement Learning from Human Feedback (RLHF), Direct Policy Optimisation (DPO) and Sequence Likelihood Calibration (SLiC) have emerged. In this paper, our contribution is two-fold. First, we show the equivalence between two recent alignment methods, namely Identity Policy Optimisation (IPO) and Nash Mirror Descent (Nash-MD). Second, we introduce a generalisation of IPO, named IPO-MD, that leverages the regularised sampling approach proposed by Nash-MD. This equivalence may seem surprising at first sight, since IPO is an offline method whereas Nash-MD is an online method using a preference model. However, this equivalence can be proven when we consider the online version of IPO, that is when both generations are sampled by the online policy and annotated by a trained preference model. Optimising the IPO loss with such a stream of data becomes then equivalent to finding the Nash equilibrium of the preference model through self-play. Building on this equivalence, we introduce the IPO-MD algorithm that generates data with a mixture policy (between the online and reference policy) similarly as the general Nash-MD algorithm. We compare online-IPO and IPO-MD to different online versions of existing losses on preference data such as DPO and SLiC on a summarisation task.

Establishing whether language models can use contextual information in a human-plausible way is important to ensure their trustworthiness in real-world settings. However, the questions of when and which parts of the context affect model generations are typically tackled separately, with current plausibility evaluations being practically limited to a handful of artificial benchmarks. To address this, we introduce Plausibility Evaluation of Context Reliance (PECoRe), an end-to-end interpretability framework designed to quantify context usage in language models' generations. Our approach leverages model internals to (i) contrastively identify context-sensitive target tokens in generated texts and (ii) link them to contextual cues justifying their prediction. We use \pecore to quantify the plausibility of context-aware machine translation models, comparing model rationales with human annotations across several discourse-level phenomena. Finally, we apply our method to unannotated model translations to identify context-mediated predictions and highlight instances of (im)plausible context usage throughout generation.

The rapid advancement in neurotechnology in recent years has created an emerging critical intersection between neurotechnology and security. Implantable devices, non-invasive monitoring, and non-invasive therapies all carry with them the prospect of violating the privacy and autonomy of individuals' cognition. A growing number of scientists and physicians have made calls to address this issue -- which we term Cognitive Security -- but applied efforts have been limited. A major barrier hampering scientific and engineering efforts to address Cognitive Security is the lack of a clear means of describing and analyzing relevant problems. In this paper we develop Cognitive Security, a mathematical framework which enables such description and analysis by drawing on methods and results from multiple fields. We demonstrate certain statistical properties which have significant implications for Cognitive Security, and then present descriptions of the algorithmic problems faced by attackers attempting to violate privacy and autonomy, and defenders attempting to obstruct such attempts.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

北京阿比特科技有限公司