Effective communication is crucial for deploying robots in mission-specific tasks, but inadequate or unreliable communication can greatly reduce mission efficacy, for example in search and rescue missions where communication-denied conditions may occur. In such missions, robots are deployed to locate targets, such as human survivors, but they might get trapped at hazardous locations, such as in a trapping pit or by debris. Thus, the information the robot collected is lost owing to the lack of communication. In our prior work, we developed the notion of a path-based sensor. A path-based sensor detects whether or not an event has occurred along a particular path, but it does not provide the exact location of the event. Such path-based sensor observations are well-suited to communication-denied environments, and various studies have explored methods to improve information gathering in such settings. In some missions it is typical for target elements to be in close proximity to hazardous factors that hinder the information-gathering process. In this study, we examine a similar scenario and conduct experiments to determine if additional knowledge about the correlation between hazards and targets improves the efficiency of information gathering. To incorporate this knowledge, we utilize a Bayesian network representation of domain knowledge and develop an algorithm based on this representation. Our empirical investigation reveals that such additional information on correlation is beneficial only in environments with moderate hazard lethality, suggesting that while knowledge of correlation helps, further research and development is necessary for optimal outcomes.
The FAIR Principles are a set of good practices to improve the reproducibility and quality of data in an Open Science context. Different sets of indicators have been proposed to evaluate the FAIRness of digital objects, including datasets that are usually stored in repositories or data portals. However, indicators like those proposed by the Research Data Alliance are provided from a high-level perspective that can be interpreted and they are not always realistic to particular environments like multidisciplinary repositories. This paper describes FAIR EVA, a new tool developed within the European Open Science Cloud context that is oriented to particular data management systems like open repositories, which can be customized to a specific case in a scalable and automatic environment. It aims to be adaptive enough to work for different environments, repository software and disciplines, taking into account the flexibility of the FAIR Principles. As an example, we present DIGITAL.CSIC repository as the first target of the tool, gathering the particular needs of a multidisciplinary institution as well as its institutional repository.
In the field of Geriatronics, enabling effective and transparent communication between humans and robots is crucial for enhancing the acceptance and performance of assistive robots. Our early-stage research project investigates the potential of language-based modulation as a means to improve human-robot interaction. We propose to explore real-time modulation during task execution, leveraging language cues, visual references, and multimodal inputs. By developing transparent and interpretable methods, we aim to enable robots to adapt and respond to language commands, enhancing their usability and flexibility. Through the exchange of insights and knowledge at the workshop, we seek to gather valuable feedback to advance our research and contribute to the development of interactive robotic systems for Geriatronics and beyond.
Recent advances in graph neural networks (GNNs) have allowed molecular simulations with accuracy on par with conventional gold-standard methods at a fraction of the computational cost. Nonetheless, as the field has been progressing to bigger and more complex architectures, state-of-the-art GNNs have become largely prohibitive for many large-scale applications. In this paper, we, for the first time, explore the utility of knowledge distillation (KD) for accelerating molecular GNNs. To this end, we devise KD strategies that facilitate the distillation of hidden representations in directional and equivariant GNNs and evaluate their performance on the regression task of energy and force prediction. We validate our protocols across different teacher-student configurations and demonstrate that they can boost the predictive accuracy of student models without altering their architecture. We also conduct comprehensive optimization of various components of our framework, and investigate the potential of data augmentation to further enhance performance. All in all, we manage to close as much as 59% of the gap in predictive accuracy between models like GemNet-OC and PaiNN with zero additional cost at inference.
Many real-world decision-making tasks require learning causal relationships between a set of variables. Traditional causal discovery methods, however, require that all variables are observed, which is often not feasible in practical scenarios. Without additional assumptions about the unobserved variables, it is not possible to recover any causal relationships from observational data. Fortunately, in many applied settings, additional structure among the confounders can be expected. In particular, pervasive confounding is commonly encountered and has been utilized for consistent causal estimation in linear causal models. In this paper, we present a provably consistent method to estimate causal relationships in the non-linear, pervasive confounding setting. The core of our procedure relies on the ability to estimate the confounding variation through a simple spectral decomposition of the observed data matrix. We derive a DAG score function based on this insight, prove its consistency in recovering a correct ordering of the DAG, and empirically compare it to previous approaches. We demonstrate improved performance on both simulated and real datasets by explicitly accounting for both confounders and non-linear effects.
Assistive technologies and in particular assistive robotic arms have the potential to enable people with motor impairments to live a self-determined life. More and more of these systems have become available for end users in recent years, such as the Kinova Jaco robotic arm. However, they mostly require complex manual control, which can overwhelm users. As a result, researchers have explored ways to let such robots act autonomously. However, at least for this specific group of users, such an approach has shown to be futile. Here, users want to stay in control to achieve a higher level of personal autonomy, to which an autonomous robot runs counter. In our research, we explore how Artifical Intelligence (AI) can be integrated into a shared control paradigm. In particular, we focus on the consequential requirements for the interface between human and robot and how we can keep humans in the loop while still significantly reducing the mental load and required motor skills.
The utilization of finite field multipliers is pervasive in contemporary digital systems, with hardware implementation for bit parallel operation often necessitating millions of logic gates. However, various digital design issues, whether natural or stemming from soft errors, can result in gate malfunction, ultimately leading to erroneous multiplier outputs. Thus, to prevent susceptibility to error, it is imperative to employ an effective finite field multiplier implementation that boasts a robust fault detection capability. This study proposes a novel fault detection scheme for a recent bit-parallel polynomial basis multiplier over GF(2m), intended to achieve optimal fault detection performance for finite field multipliers while simultaneously maintaining a low-complexity implementation, a favored attribute in resource-constrained applications like smart cards. The primary concept behind the proposed approach is centered on the implementation of a BCH decoder that utilizes re-encoding technique and FIBM algorithm in its first and second sub-modules, respectively. This approach serves to address hardware complexity concerns while also making use of Berlekamp-Rumsey-Solomon (BRS) algorithm and Chien search method in the third sub-module of the decoder to effectively locate errors with minimal delay. The results of our synthesis indicate that our proposed error detection and correction architecture for a 45-bit multiplier with 5-bit errors achieves a 37% and 49% reduction in critical path delay compared to existing designs. Furthermore, the hardware complexity associated with a 45-bit multiplicand that contains 5 errors is confined to a mere 80%, which is significantly lower than the most exceptional BCH-based fault recognition methodologies, including TMR, Hamming's single error correction, and LDPC-based procedures within the realm of finite field multiplication.
ChatGPT, an AI chatbot, has gained popularity for its capability in generating human-like responses. However, this feature carries several risks, most notably due to its deceptive behaviour such as offering users misleading or fabricated information that could further cause ethical issues. To better understand the impact of ChatGPT on our social, cultural, economic, and political interactions, it is crucial to investigate how ChatGPT operates in the real world where various societal pressures influence its development and deployment. This paper emphasizes the need to study ChatGPT "in the wild", as part of the ecosystem it is embedded in, with a strong focus on user involvement. We examine the ethical challenges stemming from ChatGPT's deceptive human-like interactions and propose a roadmap for developing more transparent and trustworthy chatbots. Central to our approach is the importance of proactive risk assessment and user participation in shaping the future of chatbot technology.
Recent advances in state-of-the-art DNN architecture design have been moving toward Transformer models. These models achieve superior accuracy across a wide range of applications. This trend has been consistent over the past several years since Transformer models were originally introduced. However, the amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate, and this has made their deployment in latency-sensitive applications challenging. As such, there has been an increased focus on making Transformer models more efficient, with methods that range from changing the architecture design, all the way to developing dedicated domain-specific accelerators. In this work, we survey different approaches for efficient Transformer inference, including: (i) analysis and profiling of the bottlenecks in existing Transformer architectures and their similarities and differences with previous convolutional models; (ii) implications of Transformer architecture on hardware, including the impact of non-linear operations such as Layer Normalization, Softmax, and GELU, as well as linear operations, on hardware design; (iii) approaches for optimizing a fixed Transformer architecture; (iv) challenges in finding the right mapping and scheduling of operations for Transformer models; and (v) approaches for optimizing Transformer models by adapting the architecture using neural architecture search. Finally, we perform a case study by applying the surveyed optimizations on Gemmini, the open-source, full-stack DNN accelerator generator, and we show how each of these approaches can yield improvements, compared to previous benchmark results on Gemmini. Among other things, we find that a full-stack co-design approach with the aforementioned methods can result in up to 88.7x speedup with a minimal performance degradation for Transformer inference.
Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.