Research in cognitive psychology has established that whether people prefer simpler explanations to complex ones is context dependent, but the question of `simple vs. complex' becomes critical when an artificial agent seeks to explain its decisions or predictions to humans. We present a model for abstracting causal reasoning chains for the purpose of explanation. This model uses a set of rules to progressively abstract different types of causal information in causal proof traces. We perform online studies using 123 Amazon MTurk participants and with five industry experts over two domains: maritime patrol and weather prediction. We found participants' satisfaction with generated explanations was based on the consistency of relationships among the causes (coherence) that explain an event; and that the important question is not whether people prefer simple or complex explanations, but what types of causal information are relevant to individuals in specific contexts.
We develop an inferential toolkit for analyzing object-valued responses, which correspond to data situated in general metric spaces, paired with Euclidean predictors within the conformal framework. To this end we introduce conditional profile average transport costs, where we compare distance profiles that correspond to one-dimensional distributions of probability mass falling into balls of increasing radius through the optimal transport cost when moving from one distance profile to another. The average transport cost to transport a given distance profile to all others is crucial for statistical inference in metric spaces and underpins the proposed conditional profile scores. A key feature of the proposed approach is to utilize the distribution of conditional profile average transport costs as conformity score for general metric space-valued responses, which facilitates the construction of prediction sets by the split conformal algorithm. We derive the uniform convergence rate of the proposed conformity score estimators and establish asymptotic conditional validity for the prediction sets. The finite sample performance for synthetic data in various metric spaces demonstrates that the proposed conditional profile score outperforms existing methods in terms of both coverage level and size of the resulting prediction sets, even in the special case of scalar and thus Euclidean responses. We also demonstrate the practical utility of conditional profile scores for network data from New York taxi trips and for compositional data reflecting energy sourcing of U.S. states.
Real-world misinformation can be partially correct and even factual but misleading. It undermines public trust in science and democracy, particularly on social media, where it can spread rapidly. High-quality and timely correction of misinformation that identifies and explains its (in)accuracies has been shown to effectively reduce false beliefs. Despite the wide acceptance of manual correction, it is difficult to be timely and scalable, a concern as technologies like large language models (LLMs) make misinformation easier to produce. LLMs also have versatile capabilities that could accelerate misinformation correction-however, they struggle due to a lack of recent information, a tendency to produce false content, and limitations in addressing multimodal information. We propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information. By retrieving evidence as refutations or contexts, MUSE identifies and explains (in)accuracies in a piece of content-not presupposed to be misinformation-with references. It also describes images and conducts multimodal searches to verify and correct multimodal content. Fact-checking experts evaluate responses to social media content that are not presupposed to be (non-)misinformation but broadly include incorrect, partially correct, and correct posts, that may or may not be misleading. We propose and evaluate 13 dimensions of misinformation correction quality, ranging from the accuracy of identifications and factuality of explanations to the relevance and credibility of references. The results demonstrate MUSE's ability to promptly write high-quality responses to potential misinformation on social media-overall, MUSE outperforms GPT-4 by 37% and even high-quality responses from laypeople by 29%. This work reveals LLMs' potential to help combat real-world misinformation effectively and efficiently.
Reachability and other path-based measures on temporal graphs can be used to understand spread of infection, information, and people in modelled systems. Due to delays and errors in reporting, temporal graphs derived from data are unlikely to perfectly reflect reality, especially with respect to the precise times at which edges appear. To reflect this uncertainty, we consider a model in which some number $\zeta$ of edge appearances may have their timestamps perturbed by $\pm\delta$ for some $\delta$. Within this model, we investigate temporal reachability and consider the problem of determining the maximum number of vertices any vertex can reach under these perturbations. We show that this problem is intractable in general but is efficiently solvable when $\zeta$ is sufficiently large. We also give algorithms which solve this problem in several restricted settings. We complement this with some contrasting results concerning the complexity of related temporal eccentricity problems under perturbation.
Languages can encode temporal subordination lexically, via subordinating conjunctions, and morphologically, by marking the relation on the predicate. Systematic cross-linguistic variation among the former can be studied using well-established token-based typological approaches to token-aligned parallel corpora. Variation among different morphological means is instead much harder to tackle and therefore more poorly understood, despite being predominant in several language groups. This paper explores variation in the expression of generic temporal subordination ('when'-clauses) among the languages of Latin America and the Caribbean, where morphological marking is particularly common. It presents probabilistic semantic maps computed on the basis of the languages of the region, thus avoiding bias towards the many world's languages that exclusively use lexified connectors, incorporating associations between character $n$-grams and English $when$. The approach allows capturing morphological clause-linkage devices in addition to lexified connectors, paving the way for larger-scale, strategy-agnostic analyses of typological variation in temporal subordination.
Scopus and the Web of Science have been the foundation for research in the science of science even though these traditional databases systematically underrepresent certain disciplines and world regions. In response, new inclusive databases, notably OpenAlex, have emerged. While many studies have begun using OpenAlex as a data source, few critically assess its limitations. This study, conducted in collaboration with the OpenAlex team, addresses this gap by comparing OpenAlex to Scopus across a number of dimensions. The analysis concludes that OpenAlex is a superset of Scopus and can be a reliable alternative for some analyses, particularly at the country level. Despite this, issues of metadata accuracy and completeness show that additional research is needed to fully comprehend and address OpenAlex's limitations. Doing so will be necessary to confidently use OpenAlex across a wider set of analyses, including those that are not at all possible with more constrained databases.
Logistic regression is widely used in many areas of knowledge. Several works compare the performance of lasso and maximum likelihood estimation in logistic regression. However, part of these works do not perform simulation studies and the remaining ones do not consider scenarios in which the ratio of the number of covariates to sample size is high. In this work, we compare the discrimination performance of lasso and maximum likelihood estimation in logistic regression using simulation studies and applications. Variable selection is done both by lasso and by stepwise when maximum likelihood estimation is used. We consider a wide range of values for the ratio of the number of covariates to sample size. The main conclusion of the work is that lasso has a better discrimination performance than maximum likelihood estimation when the ratio of the number of covariates to sample size is high.
All poetic forms come from somewhere. Prosodic templates can be copied for generations, altered by individuals, imported from foreign traditions, or fundamentally changed under the pressures of language evolution. Yet these relationships are notoriously difficult to trace across languages and times. This paper introduces an unsupervised method for detecting structural similarities in poems using local sequence alignment. The method relies on encoding poetic texts as strings of prosodic features using a four-letter alphabet; these sequences are then aligned to derive a distance measure based on weighted symbol (mis)matches. Local alignment allows poems to be clustered according to emergent properties of their underlying prosodic patterns. We evaluate method performance on a meter recognition tasks against strong baselines and show its potential for cross-lingual and historical research using three short case studies: 1) mutations in quantitative meter in classical Latin, 2) European diffusion of the Renaissance hendecasyllable, and 3) comparative alignment of modern meters in 18--19th century Czech, German and Russian. We release an implementation of the algorithm as a Python package with an open license.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.