亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Generalized Reed-Solomon (RS) codes are a common choice for efficient, reliable error correction in memory and communications systems. These codes add $2t$ extra parity symbols to a block of memory, and can efficiently and reliably correct up to $t$ symbol errors in that block. Decoding is possible beyond this bound, but it is imperfectly reliable and often computationally expensive. Beyond-bound decoding is an important problem to solve for error-correcting Dynamic Random Access Memory (DRAM). These memories are often designed so that each access touches two extra memory devices, so that a failure in any one device can be corrected. But system architectures increasingly require DRAM to store metadata in addition to user data. When the metadata replaces parity data, a single-device failure is then beyond-bound. An error-correction system can either protect each access with a single RS code, or divide it into several segments protected with a shorter code, usually in an Interleaved Reed-Solomon (IRS) configuration. The full-block RS approach is more reliable, both at correcting errors and at preventing silent data corruption (SDC). The IRS option is faster, and is especially efficient at beyond-bound correction of single- or double-device failures. Here we describe a new family of "unraveling" Reed-Solomon codes that bridges the gap between these options. Our codes are full-block generalized RS codes, but they can also be decoded using an IRS decoder. As a result, they combine the speed and beyond-bound correction capabilities of interleaved codes with the robustness of full-block codes, including the ability of the latter to reliably correct failures across multiple devices. We show that unraveling codes are an especially good fit for high-reliability DRAM error correction.

相關內容

Conformer-based end-to-end models have become ubiquitous these days and are commonly used in both streaming and non-streaming automatic speech recognition (ASR). Techniques like dual-mode and dynamic chunk training helped unify streaming and non-streaming systems. However, there remains a performance gap between streaming with a full and limited past context. To address this issue, we propose the integration of a novel dynamic contextual carry-over mechanism in a state-of-the-art (SOTA) unified ASR system. Our proposed dynamic context Conformer (DCTX-Conformer) utilizes a non-overlapping contextual carry-over mechanism that takes into account both the left context of a chunk and one or more preceding context embeddings. We outperform the SOTA by a relative 25.0% word error rate, with a negligible latency impact due to the additional context embeddings.

Long quantum codes using projective Reed-Muller codes are constructed. Projective Reed-Muller are evaluation codes obtained by evaluating homogeneous polynomials at the projective space. We obtain asymmetric and symmetric quantum codes by using the CSS construction and the Hermitian construction, respectively. We provide entanglement-assisted quantum error-correcting codes from projective Reed-Muller codes with flexible amounts of entanglement by considering equivalent codes. Moreover, we also construct quantum codes from subfield subcodes of projective Reed-Muller codes.

Activation Patching is a method of directly computing causal attributions of behavior to model components. However, applying it exhaustively requires a sweep with cost scaling linearly in the number of model components, which can be prohibitively expensive for SoTA Large Language Models (LLMs). We investigate Attribution Patching (AtP), a fast gradient-based approximation to Activation Patching and find two classes of failure modes of AtP which lead to significant false negatives. We propose a variant of AtP called AtP*, with two changes to address these failure modes while retaining scalability. We present the first systematic study of AtP and alternative methods for faster activation patching and show that AtP significantly outperforms all other investigated methods, with AtP* providing further significant improvement. Finally, we provide a method to bound the probability of remaining false negatives of AtP* estimates.

In 1999, Xing, Niederreiter and Lam introduced a generalization of AG codes using the evaluation at non-rational places of a function field. In this paper, we show that one can obtain a locality parameter $r$ in such codes by using only non-rational places of degrees at most $r$. This is, up to the author's knowledge, a new way to construct locally recoverable codes (LRCs). We give an example of such a code reaching the Singleton-like bound for LRCs, and show the parameters obtained for some longer codes over $\mathbb F_3$. We then investigate similarities with certain concatenated codes. Contrary to previous methods, our construction allows one to obtain directly codes whose dimension is not a multiple of the locality. Finally, we give an asymptotic study using the Garcia-Stichtenoth tower of function fields, for both our construction and a construction of concatenated codes. We give explicit infinite families of LRCs with locality 2 over any finite field of cardinality greater than 3 following our new approach.

With the increasing multimedia information, multimodal recommendation has received extensive attention. It utilizes multimodal information to alleviate the data sparsity problem in recommendation systems, thus improving recommendation accuracy. However, the reliance on labeled data severely limits the performance of multimodal recommendation models. Recently, self-supervised learning has been used in multimodal recommendations to mitigate the label sparsity problem. Nevertheless, the state-of-the-art methods cannot avoid the modality noise when aligning multimodal information due to the large differences in the distributions of different modalities. To this end, we propose a Multi-level sElf-supervised learNing for mulTimOdal Recommendation (MENTOR) method to address the label sparsity problem and the modality alignment problem. Specifically, MENTOR first enhances the specific features of each modality using the graph convolutional network (GCN) and fuses the visual and textual modalities. It then enhances the item representation via the item semantic graph for all modalities, including the fused modality. Then, it introduces two multilevel self-supervised tasks: the multilevel cross-modal alignment task and the general feature enhancement task. The multilevel cross-modal alignment task aligns each modality under the guidance of the ID embedding from multiple levels while maintaining the historical interaction information. The general feature enhancement task enhances the general feature from both the graph and feature perspectives to improve the robustness of our model. Extensive experiments on three publicly available datasets demonstrate the effectiveness of our method. Our code is publicly available at //github.com/Jinfeng-Xu/MENTOR.

We consider the statistical linear inverse problem of making inference on an unknown source function in an elliptic partial differential equation from noisy observations of its solution. We employ nonparametric Bayesian procedures based on Gaussian priors, leading to convenient conjugate formulae for posterior inference. We review recent results providing theoretical guarantees on the quality of the resulting posterior-based estimation and uncertainty quantification, and we discuss the application of the theory to the important classes of Gaussian series priors defined on the Dirichlet-Laplacian eigenbasis and Mat\'ern process priors. We provide an implementation of posterior inference for both classes of priors, and investigate its performance in a numerical simulation study.

Changes in facial expression, head movement, body movement and gesture movement are remarkable cues in sign language recognition, and most of the current continuous sign language recognition(CSLR) research methods mainly focus on static images in video sequences at the frame-level feature extraction stage, while ignoring the dynamic changes in the images. In this paper, we propose a novel motor attention mechanism to capture the distorted changes in local motion regions during sign language expression, and obtain a dynamic representation of image changes. And for the first time, we apply the self-distillation method to frame-level feature extraction for continuous sign language, which improves the feature expression without increasing the computational resources by self-distilling the features of adjacent stages and using the higher-order features as teachers to guide the lower-order features. The combination of the two constitutes our proposed holistic model of CSLR Based on motor attention mechanism and frame-level Self-Distillation (MAM-FSD), which improves the inference ability and robustness of the model. We conduct experiments on three publicly available datasets, and the experimental results show that our proposed method can effectively extract the sign language motion information in videos, improve the accuracy of CSLR and reach the state-of-the-art level.

In large-scale, data-driven applications, parameters are often only known approximately due to noise and limited data samples. In this paper, we focus on high-dimensional optimization problems with linear constraints under uncertain conditions. To find high quality solutions for which the violation of the true constraints is limited, we develop a linear shrinkage method that blends random matrix theory and robust optimization principles. It aims to minimize the Frobenius distance between the estimated and the true parameter matrix, especially when dealing with a large and comparable number of constraints and variables. This data-driven method excels in simulations, showing superior noise resilience and more stable performance in both obtaining high quality solutions and adhering to the true constraints compared to traditional robust optimization. Our findings highlight the effectiveness of our method in improving the robustness and reliability of optimization in high-dimensional, data-driven scenarios.

Fully decentralized learning is gaining momentum for training AI models at the Internet's edge, addressing infrastructure challenges and privacy concerns. In a decentralized machine learning system, data is distributed across multiple nodes, with each node training a local model based on its respective dataset. The local models are then shared and combined to form a global model capable of making accurate predictions on new data. Our exploration focuses on how different types of network structures influence the spreading of knowledge - the process by which nodes incorporate insights gained from learning patterns in data available on other nodes across the network. Specifically, this study investigates the intricate interplay between network structure and learning performance using three network topologies and six data distribution methods. These methods consider different vertex properties, including degree centrality, betweenness centrality, and clustering coefficient, along with whether nodes exhibit high or low values of these metrics. Our findings underscore the significance of global centrality metrics (degree, betweenness) in correlating with learning performance, while local clustering proves less predictive. We highlight the challenges in transferring knowledge from peripheral to central nodes, attributed to a dilution effect during model aggregation. Additionally, we observe that central nodes exert a pull effect, facilitating the spread of knowledge. In examining degree distribution, hubs in Barabasi-Albert networks positively impact learning for central nodes but exacerbate dilution when knowledge originates from peripheral nodes. Finally, we demonstrate the formidable challenge of knowledge circulation outside of segregated communities.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司