亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Symbolic Regression (SR) can generate interpretable, concise expressions that fit a given dataset, allowing for more human understanding of the structure than black-box approaches. The addition of background knowledge (in the form of symbolic mathematical constraints) allows for the generation of expressions that are meaningful with respect to theory while also being consistent with data. We specifically examine the addition of constraints to traditional genetic algorithm (GA) based SR (PySR) as well as a Markov-chain Monte Carlo (MCMC) based Bayesian SR architecture (Bayesian Machine Scientist), and apply these to rediscovering adsorption equations from experimental, historical datasets. We find that, while hard constraints prevent GA and MCMC SR from searching, soft constraints can lead to improved performance both in terms of search effectiveness and model meaningfulness, with computational costs increasing by about an order-of-magnitude. If the constraints do not correlate well with the dataset or expected models, they can hinder the search of expressions. We find Bayesian SR is better these constraints (as the Bayesian prior) than by modifying the fitness function in the GA

相關內容

圖(tu)(tu)像超分辨(bian)(bian)率(lv)(SR)是提高圖(tu)(tu)像分辨(bian)(bian)率(lv)的一類重要的圖(tu)(tu)像處理技術以及計算機視覺中的視頻。

In this paper we introduce InDistill, a model compression approach that combines knowledge distillation and channel pruning in a unified framework for the transfer of the critical information flow paths from a heavyweight teacher to a lightweight student. Such information is typically collapsed in previous methods due to an encoding stage prior to distillation. By contrast, InDistill leverages a pruning operation applied to the teacher's intermediate layers reducing their width to the corresponding student layers' width. In that way, we force architectural alignment enabling the intermediate layers to be directly distilled without the need of an encoding stage. Additionally, a curriculum learning-based training scheme is adopted considering the distillation difficulty of each layer and the critical learning periods in which the information flow paths are created. The proposed method surpasses state-of-the-art performance on three standard benchmarks, i.e. CIFAR-10, CUB-200, and FashionMNIST by 3.08%, 14.27%, and 1% mAP, respectively, as well as on more challenging evaluation settings, i.e. ImageNet and CIFAR-100 by 1.97% and 5.65% mAP, respectively.

We consider the multiple testing of the general regression framework aiming at studying the relationship between a univariate response and a p-dimensional predictor. To test the hypothesis of the effect of each predictor, we construct an Angular Balanced Statistic (ABS) based on the estimator of the sliced inverse regression without assuming a model of the conditional distribution of the response. According to the developed limiting distribution results in this paper, we have shown that ABS is asymptotically symmetric with respect to zero under the null hypothesis. We then propose a Model-free multiple Testing procedure using Angular balanced statistics (MTA) and show theoretically that the false discovery rate of this method is less than or equal to a designated level asymptotically. Numerical evidence has shown that the MTA method is much more powerful than its alternatives, subject to the control of the false discovery rate.

Computing an AUC as a performance measure to compare the quality of different machine learning models is one of the final steps of many research projects. Many of these methods are trained on privacy-sensitive data and there are several different approaches like $\epsilon$-differential privacy, federated machine learning and cryptography if the datasets cannot be shared or used jointly at one place for training and/or testing. In this setting, it can also be a problem to compute the global AUC, since the labels might also contain privacy-sensitive information. There have been approaches based on $\epsilon$-differential privacy to address this problem, but to the best of our knowledge, no exact privacy preserving solution has been introduced. In this paper, we propose an MPC-based solution, called ppAURORA, with private merging of individually sorted lists from multiple sources to compute the exact AUC as one could obtain on the pooled original test samples. With ppAURORA, the computation of the exact area under precision-recall and receiver operating characteristic curves is possible even when ties between prediction confidence values exist. We use ppAURORA to evaluate two different models predicting acute myeloid leukemia therapy response and heart disease, respectively. We also assess its scalability via synthetic data experiments. All these experiments show that we efficiently and privately compute the exact same AUC with both evaluation metrics as one can obtain on the pooled test samples in plaintext according to the semi-honest adversary setting.

Given tensors $\boldsymbol{\mathscr{A}}, \boldsymbol{\mathscr{B}}, \boldsymbol{\mathscr{C}}$ of size $m \times 1 \times n$, $m \times p \times 1$, and $1\times p \times n$, respectively, their Bhattacharya-Mesner (BM) product will result in a third order tensor of dimension $m \times p \times n$ and BM-rank of 1 (Mesner and Bhattacharya, 1990). Thus, if a third-order tensor can be written as a sum of a small number of such BM-rank 1 terms, this BM-decomposition (BMD) offers an implicitly compressed representation of the tensor. Therefore, in this paper, we give a generative model which illustrates that spatio-temporal video data can be expected to have low BM-rank. Then, we discuss non-uniqueness properties of the BMD and give an improved bound on the BM-rank of a third-order tensor. We present and study properties of an iterative algorithm for computing an approximate BMD, including convergence behavior and appropriate choices for starting guesses that allow for the decomposition of our spatial-temporal data into stationary and non-stationary components. Several numerical experiments show the impressive ability of our BMD algorithm to extract important temporal information from video data while simultaneously compressing the data. In particular, we compare our approach with dynamic mode decomposition (DMD): first, we show how the matrix-based DMD can be reinterpreted in tensor BMP form, then we explain why the low BM-rank decomposition can produce results with superior compression properties while simultaneously providing better separation of stationary and non-stationary features in the data. We conclude with a comparison of our low BM-rank decomposition to two other tensor decompositions, CP and the t-SVDM.

In this paper, we use the optimization formulation of nonlinear Kalman filtering and smoothing problems to develop second-order variants of iterated Kalman smoother (IKS) methods. We show that Newton's method corresponds to a recursion over affine smoothing problems on a modified state-space model augmented by a pseudo measurement. The first and second derivatives required in this approach can be efficiently computed with widely available automatic differentiation tools. Furthermore, we show how to incorporate line-search and trust-region strategies into the proposed second-order IKS algorithm in order to regularize updates between iterations. Finally, we provide numerical examples to demonstrate the method's efficiency in terms of runtime compared to its batch counterpart.

Conventional knowledge distillation (KD) methods require access to the internal information of teachers, e.g., logits. However, such information may not always be accessible for large pre-trained language models (PLMs). In this work, we focus on decision-based KD for PLMs, where only teacher decisions (i.e., top-1 labels) are accessible. Considering the information gap between logits and decisions, we propose a novel method to estimate logits from the decision distributions. Specifically, decision distributions can be both derived as a function of logits theoretically and estimated with test-time data augmentation empirically. By combining the theoretical and empirical estimations of the decision distributions together, the estimation of logits can be successfully reduced to a simple root-finding problem. Extensive experiments show that our method significantly outperforms strong baselines on both natural language understanding and machine reading comprehension datasets.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司