亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges. This becomes particularly evident when LLMs inadvertently generate harmful or toxic content, either unintentionally or because of intentional inducement. Existing alignment methods usually direct LLMs toward favorable outcomes by utilizing human-annotated, flawless instruction-response pairs. Conversely, this study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them. In this case, mistakes are repurposed into valuable data for alignment, effectively helping to avoid the production of erroneous responses. Without external models or human annotations, our method leverages a model's intrinsic ability to discern undesirable mistakes and improves the safety of its generated responses. Experimental results reveal that our method outperforms existing alignment approaches in enhancing model safety while maintaining the overall utility.

相關內容

Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data. However, such an approach overlooks the rich diversity of human preferences inherent in data collected from multiple users. In this work, we first derive an impossibility result of alignment with single reward RLHF, thereby highlighting its insufficiency in representing diverse human preferences. To provide an equitable solution to the problem, we learn a mixture of preference distributions via an expectation-maximization algorithm and propose a MaxMin alignment objective for policy learning inspired by the Egalitarian principle in social choice theory to better represent diverse human preferences. We elucidate the connection of our proposed approach to distributionally robust optimization and general utility RL, thereby highlighting the generality and robustness of our proposed solution. We present comprehensive experimental results on small-scale (GPT-2) and large-scale language models (with Tulu2-7B) and show the efficacy of the proposed approach in the presence of diversity among human preferences. Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms and improves the win-rate (accuracy) for minority groups by over 33% without compromising the performance of majority groups, showcasing the robustness and fairness of our approach. We remark that our findings in this work are not only limited to language models but also extend to reinforcement learning in general.

Large language models (LLMs) strengthen instruction-following capability through instruction-finetuning (IFT) on supervised instruction/response data. However, widely used IFT datasets (e.g., Alpaca's 52k data) surprisingly contain many low-quality instances with incorrect or irrelevant responses, which are misleading and detrimental to IFT. In this paper, we propose a simple and effective data selection strategy that automatically identifies and filters out low-quality data using a strong LLM (e.g., ChatGPT). To this end, we introduce AlpaGasus, which is finetuned on only 9k high-quality data filtered from the 52k Alpaca data. AlpaGasus significantly outperforms the original Alpaca as evaluated by GPT-4 on multiple test sets and the controlled human evaluation. Its 13B variant matches $>90\%$ performance of its teacher LLM (i.e., Text-Davinci-003 generating the 52k data) on test tasks. It also provides 5.7x faster training, reducing the training time for a 7B variant from 80 minutes (for Alpaca) to 14 minutes. Moreover, the experiments prove the efficacy of our method across diverse datasets, base models, and LLM filters. Overall, AlpaGasus demonstrates a novel data-centric IFT paradigm that can be generally applied to instruction-tuning data, leading to faster training and better instruction-following models. Our project page is available at: //lichang-chen.github.io/AlpaGasus/

Having revolutionized natural language processing (NLP) applications, large language models (LLMs) are expanding into the realm of multimodal inputs. Owing to their ability to interpret images, multimodal LLMs (MLLMs) have been primarily used for vision-language tasks. Currently, MLLMs have not yet been extended for domain-specific visual tasks, which require a more explicit understanding of visual information. We developed a method to transform domain-specific visual and vision-language datasets into a unified question answering format called Visual Question Answering Instruction (VQA-IN), thereby extending MLLM to domain-specific tasks. The VQA-IN was applied to train multiple MLLM architectures using smaller versions of LLMs (sLLMs). The experimental results indicated that the proposed method achieved a high score metric on domainspecific visual tasks while also maintaining its performance on vision-language tasks in a multitask manner.

Multimodal large language models (MLLMs) have emerged as a prominent area of interest within the research community, given their proficiency in handling and reasoning with non-textual data, including images and videos. This study seeks to extend the application of MLLMs to the realm of autonomous driving by introducing DriveGPT4, a novel interpretable end-to-end autonomous driving system based on LLMs. Capable of processing multi-frame video inputs and textual queries, DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users. Furthermore, DriveGPT4 predicts low-level vehicle control signals in an end-to-end fashion. These advanced capabilities are achieved through the utilization of a bespoke visual instruction tuning dataset, specifically tailored for autonomous driving applications, in conjunction with a mix-finetuning training strategy. DriveGPT4 represents the pioneering effort to leverage LLMs for the development of an interpretable end-to-end autonomous driving solution. Evaluations conducted on the BDD-X dataset showcase the superior qualitative and quantitative performance of DriveGPT4. Additionally, the fine-tuning of domain-specific data enables DriveGPT4 to yield close or even improved results in terms of autonomous driving grounding when contrasted with GPT4-V. The code and dataset will be publicly available.

In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning. However, existing literature has highlighted the sensitivity of this capability to the selection of few-shot demonstrations. Current understandings of the underlying mechanisms by which this capability arises from regular language model pretraining objectives remain disconnected from the real-world LLMs. This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models. On this premise, we propose an algorithm to select optimal demonstrations from a set of annotated data with a small LM, and then directly generalize the selected demonstrations to larger LMs. We demonstrate significant improvement over baselines, averaged over eight GPT models on eight real-world text classification datasets. We also demonstrate the real-world usefulness of our algorithm on GSM8K, a math word problem dataset. Our empirical findings support our hypothesis that LLMs implicitly infer a latent variable containing task information.

Transfomer-based models have significantly advanced natural language processing, in particular the performance in text classification tasks. Nevertheless, these models face challenges in processing large files, primarily due to their input constraints, which are generally restricted to hundreds or thousands of tokens. Attempts to address this issue in existing models usually consist in extracting only a fraction of the essential information from lengthy inputs, while often incurring high computational costs due to their complex architectures. In this work, we address the challenge of classifying large files from the perspective of correlated multiple instance learning. We introduce LaFiCMIL, a method specifically designed for large file classification. LaFiCMIL is optimized for efficient operation on a single GPU, making it a versatile solution for binary, multi-class, and multi-label classification tasks. We conducted extensive experiments using seven diverse and comprehensive benchmark datasets to assess LaFiCMIL's effectiveness. By integrating BERT for feature extraction, LaFiCMIL demonstrates exceptional performance, setting new benchmarks across all datasets. A notable achievement of our approach is its ability to scale BERT to handle nearly 20,000 tokens while operating on a single GPU with 32GB of memory. This efficiency, coupled with its state-of-the-art performance, highlights LaFiCMIL's potential as a groundbreaking approach in the field of large file classification.

Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning; adoption that has fueled a wealth of new models such as LLaVa, InstructBLIP, and PaLI-3. Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored, making it challenging to understand what factors account for model performance $-$ a challenge further complicated by the lack of objective, consistent evaluations. To address these gaps, we first compile a suite of standardized evaluations spanning visual question answering, object localization from language, and targeted challenge sets that probe properties such as hallucination; evaluations that provide calibrated, fine-grained insight into a VLM's capabilities. Second, we rigorously investigate VLMs along key design axes, including pretrained visual representations and quantifying the tradeoffs of using base vs. instruct-tuned language models, amongst others. We couple our analysis with three resource contributions: (1) a unified framework for evaluating VLMs, (2) optimized, flexible code for VLM training, and (3) checkpoints for all models, including a family of VLMs at the 7-13B scale that strictly outperform InstructBLIP and LLaVa v1.5, the state-of-the-art in open-source VLMs.

Cloud-based large language models (LLMs) such as ChatGPT have increasingly become integral to daily operations, serving as vital tools across various applications. While these models offer substantial benefits in terms of accessibility and functionality, they also introduce significant privacy concerns: the transmission and storage of user data in cloud infrastructures pose substantial risks of data breaches and unauthorized access to sensitive information; even if the transmission and storage of data is encrypted, the LLM service provider itself still knows the real contents of the data, preventing individuals or entities from confidently using such LLM services. To address these concerns, this paper proposes a simple yet effective mechanism EmojiCrypt to protect user privacy. It uses Emoji to encrypt the user inputs before sending them to LLM, effectively rendering them indecipherable to human or LLM's examination while retaining the original intent of the prompt, thus ensuring the model's performance remains unaffected. We conduct experiments on three tasks, personalized recommendation, sentiment analysis, and tabular data analysis. Experiment results reveal that EmojiCrypt can encrypt personal information within prompts in such a manner that not only prevents the discernment of sensitive data by humans or LLM itself, but also maintains or even improves the precision without further tuning, achieving comparable or even better task accuracy than directly prompting the LLM without prompt encryption. These results highlight the practicality of adopting encryption measures that safeguard user privacy without compromising the functional integrity and performance of LLMs. Code and dataset are available at //github.com/agiresearch/EmojiCrypt.

Trained on massive publicly available data, large language models (LLMs) have demonstrated tremendous success across various fields. While more data contributes to better performance, a disconcerting reality is that high-quality public data will be exhausted in a few years. In this paper, we offer a potential next step for contemporary LLMs: collaborative and privacy-preserving LLM training on the underutilized distributed private data via federated learning (FL), where multiple data owners collaboratively train a shared model without transmitting raw data. To achieve this, we build a concise, integrated, and research-friendly framework/codebase, named OpenFedLLM. It covers federated instruction tuning for enhancing instruction-following capability, federated value alignment for aligning with human values, and 7 representative FL algorithms. Besides, OpenFedLLM supports training on diverse domains, where we cover 8 training datasets; and provides comprehensive evaluations, where we cover 30+ evaluation metrics. Through extensive experiments, we observe that all FL algorithms outperform local training on training LLMs, demonstrating a clear performance improvement across a variety of settings. Notably, in a financial benchmark, Llama2-7B fine-tuned by applying any FL algorithm can outperform GPT-4 by a significant margin while the model obtained through individual training cannot, demonstrating strong motivation for clients to participate in FL. The code is available at //github.com/rui-ye/OpenFedLLM.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

北京阿比特科技有限公司