亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Approximate Message Passing (AMP) algorithms have seen widespread use across a variety of applications. However, the precise forms for their Onsager corrections and state evolutions depend on properties of the underlying random matrix ensemble, limiting the extent to which AMP algorithms derived for white noise may be applicable to data matrices that arise in practice. In this work, we study more general AMP algorithms for random matrices $W$ that satisfy orthogonal rotational invariance in law, where $W$ may have a spectral distribution that is different from the semicircle and Marcenko-Pastur laws characteristic of white noise. The Onsager corrections and state evolutions in these algorithms are defined by the free cumulants or rectangular free cumulants of the spectral distribution of $W$. Their forms were derived previously by Opper, \c{C}akmak, and Winther using non-rigorous dynamic functional theory techniques, and we provide rigorous proofs. Our motivating application is a Bayes-AMP algorithm for Principal Components Analysis, when there is prior structure for the principal components (PCs) and possibly non-white noise. For sufficiently large signal strengths and any non-Gaussian prior distributions for the PCs, we show that this algorithm provably achieves higher estimation accuracy than the sample PCs.

相關內容

A fully discrete finite difference scheme for stochastic reaction-diffusion equations driven by a $1+1$-dimensional white noise is studied. The optimal strong rate of convergence is proved without posing any regularity assumption on the non-linear reaction term. The proof relies on stochastic sewing techniques.

Generalized approximate message passing (GAMP) is a promising technique for unknown signal reconstruction of generalized linear models (GLM). However, it requires that the transformation matrix has independent and identically distributed (IID) entries. In this context, generalized vector AMP (GVAMP) is proposed for general unitarily-invariant transformation matrices but it has a high-complexity matrix inverse. To this end, we propose a universal generalized memory AMP (GMAMP) framework including the existing orthogonal AMP/VAMP, GVAMP, and MAMP as special instances. Due to the characteristics that local processors are all memory, GMAMP requires stricter orthogonality to guarantee the asymptotic IID Gaussianity and state evolution. To satisfy such orthogonality, local orthogonal memory estimators are established. The GMAMP framework provides a new principle toward building new advanced AMP-type algorithms. As an example, we construct a Bayes-optimal GMAMP (BO-GMAMP), which uses a low-complexity memory linear estimator to suppress the linear interference, and thus its complexity is comparable to GAMP. Furthermore, we prove that for unitarily-invariant transformation matrices, BO-GMAMP achieves the replica minimum (i.e., Bayes-optimal) MSE if it has a unique fixed point.

The Bayesian approach to inverse problems with functional unknowns, has received significant attention in recent years. An important component of the developing theory is the study of the asymptotic performance of the posterior distribution in the frequentist setting. The present paper contributes to the area of Bayesian inverse problems by formulating a posterior contraction theory for linear inverse problems, with truncated Gaussian series priors, and under general smoothness assumptions. Emphasis is on the intrinsic role of the truncation point both for the direct as well as for the inverse problem, which are related through the modulus of continuity as this was recently highlighted by Knapik and Salomond (2018).

Approximate linear programs (ALPs) are well-known models based on value function approximations (VFAs) to obtain policies and lower bounds on the optimal policy cost of discounted-cost Markov decision processes (MDPs). Formulating an ALP requires (i) basis functions, the linear combination of which defines the VFA, and (ii) a state-relevance distribution, which determines the relative importance of different states in the ALP objective for the purpose of minimizing VFA error. Both these choices are typically heuristic: basis function selection relies on domain knowledge while the state-relevance distribution is specified using the frequency of states visited by a heuristic policy. We propose a self-guided sequence of ALPs that embeds random basis functions obtained via inexpensive sampling and uses the known VFA from the previous iteration to guide VFA computation in the current iteration. Self-guided ALPs mitigate the need for domain knowledge during basis function selection as well as the impact of the initial choice of the state-relevance distribution, thus significantly reducing the ALP implementation burden. We establish high probability error bounds on the VFAs from this sequence and show that a worst-case measure of policy performance is improved. We find that these favorable implementation and theoretical properties translate to encouraging numerical results on perishable inventory control and options pricing applications, where self-guided ALP policies improve upon policies from problem-specific methods. More broadly, our research takes a meaningful step toward application-agnostic policies and bounds for MDPs.

We consider the deviation inequalities for the sums of independent $d$ by $d$ random matrices, as well as rank one random tensors. Our focus is on the non-isotropic case and the bounds that do not depend explicitly on the dimension $d$, but rather on the effective rank. In an elementary and unified manner, we show the following results: 1) A deviation bound for the sums of independent positive-semi-definite matrices of any rank. This result generalizes the dimension-free bound of Koltchinskii and Lounici [Bernoulli, 23(1): 110-133, 2017] on the sample covariance matrix in the sub-Gaussian case. 2) A dimension-free version of the bound of Adamczak, Litvak, Pajor and Tomczak-Jaegermann [Journal Of Amer. Math. Soc,. 23(2), 535-561, 2010] on the sample covariance matrix in the log-concave case. 3) Dimension-free bounds for the operator norm of the sums of random tensors of rank one formed either by sub-Gaussian or by log-concave random vectors. This complements the result of Gu\'{e}don and Rudelson [Adv. in Math., 208: 798-823, 2007]. 4) A non-isotropic version of the result of Alesker [Geom. Asp. of Funct. Anal., 77: 1-4, 1995] on the deviation of the norm of sub-exponential random vectors. 5) A dimension-free lower tail bound for sums of positive semi-definite matrices with heavy-tailed entries, sharpening the bound of Oliveira [Prob. Th. and Rel. Fields, 166: 1175-1194, 2016]. Our approach is based on the duality formula between entropy and moment generating functions. In contrast to the known proofs of dimension-free bounds, we avoid Talagrand's majorizing measure theorem, as well as generic chaining bounds for empirical processes. Some of our tools were pioneered by O. Catoni and co-authors in the context of robust statistical estimation.

Consider the computations at a node in a message passing algorithm. Assume that the node has incoming and outgoing messages $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ and $\mathbf{y} = (y_1, y_2, \ldots, y_n)$, respectively. In this paper, we investigate a class of structures that can be adopted by the node for computing $\mathbf{y}$ from $\mathbf{x}$, where each $y_j, j = 1, 2, \ldots, n$ is computed via a binary tree with leaves $\mathbf{x}$ excluding $x_j$. We make three main contributions regarding this class of structures. First, we prove that the minimum complexity of such a structure is $3n - 6$, and if a structure has such complexity, its minimum latency is $\delta + \lceil \log(n-2^{\delta}) \rceil$ with $\delta = \lfloor \log(n/2) \rfloor$, where the logarithm always takes base two. Second, we prove that the minimum latency of such a structure is $\lceil \log(n-1) \rceil$, and if a structure has such latency, its minimum complexity is $n \log(n-1)$ when $n-1$ is a power of two. Third, given $(n, \tau)$ with $\tau \geq \lceil \log(n-1) \rceil$, we propose a construction for a structure which we conjecture to have the minimum complexity among structures with latencies at most $\tau$. Our construction method runs in $O(n^3 \log^2(n))$ time, and the obtained structure has complexity at most (generally much smaller than) $n \lceil \log(n) \rceil - 2$.

We argue that proven exponential upper bounds on runtimes, an established area in classic algorithms, are interesting also in heuristic search and we prove several such results. We show that any of the algorithms randomized local search, Metropolis algorithm, simulated annealing, and (1+1) evolutionary algorithm can optimize any pseudo-Boolean weakly monotonic function under a large set of noise assumptions in a runtime that is at most exponential in the problem dimension~$n$. This drastically extends a previous such result, limited to the (1+1) EA, the LeadingOnes function, and one-bit or bit-wise prior noise with noise probability at most $1/2$, and at the same time simplifies its proof. With the same general argument, among others, we also derive a sub-exponential upper bound for the runtime of the $(1,\lambda)$ evolutionary algorithm on the OneMax problem when the offspring population size $\lambda$ is logarithmic, but below the efficiency threshold. To show that our approach can also deal with non-trivial parent population sizes, we prove an exponential upper bound for the runtime of the mutation-based version of the simple genetic algorithm on the OneMax benchmark, matching a known exponential lower bound.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

This paper describes a suite of algorithms for constructing low-rank approximations of an input matrix from a random linear image of the matrix, called a sketch. These methods can preserve structural properties of the input matrix, such as positive-semidefiniteness, and they can produce approximations with a user-specified rank. The algorithms are simple, accurate, numerically stable, and provably correct. Moreover, each method is accompanied by an informative error bound that allows users to select parameters a priori to achieve a given approximation quality. These claims are supported by numerical experiments with real and synthetic data.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司