Generative AI has exhibited considerable potential to transform various industries and public life. The role of news media coverage of generative AI is pivotal in shaping public perceptions and judgments about this significant technological innovation. This paper provides in-depth analysis and rich insights into the temporal and spatial distribution of topics, sentiment, and substantive themes within global news coverage focusing on the latest emerging technology --generative AI. We collected a comprehensive dataset of news articles (January 2018 to November 2023, N = 24,827). For topic modeling, we employed the BERTopic technique and combined it with qualitative coding to identify semantic themes. Subsequently, sentiment analysis was conducted using the RoBERTa-base model. Analysis of temporal patterns in the data reveals notable variability in coverage across key topics--business, corporate technological development, regulation and security, and education--with spikes in articles coinciding with major AI developments and policy discussions. Sentiment analysis shows a predominantly neutral to positive media stance, with the business-related articles exhibiting more positive sentiment, while regulation and security articles receive a reserved, neutral to negative sentiment. Our study offers a valuable framework to investigate global news discourse and evaluate news attitudes and themes related to emerging technologies.
This study consists of a novel approach toward the analysis of court judgments spanning five countries, including the United States, the United Kingdom, Rwanda, Sweden and Hong Kong. This study also explores the intersection of the latest advancements in artificial intelligence (AI) and legal analysis, emphasizing the role of AI (specifically generative AI) in identifying human biases and facilitating automated, valid, and coherent multisided argumentation of court judgments with the goal of ensuring consistent application of laws in and across various jurisdictions. By incorporating Advanced Language Models (ALMs) and a newly introduced human-AI collaborative framework, this paper seeks to analyze Grounded Theory-based research design with Advanced Language Models (ALMs) in the practice of law. SHIRLEY is the name of the AI-based application (built on top of OpenAI's GPT technology), focusing on detecting logical inconsistencies and biases across various legal decisions. SHIRLEY analysis is aggregated and is accompanied by a comparison-oriented AI-based application called SAM (also an ALM) to identify relative deviations in SHIRLEY bias detections. Further, a CRITIC is generated within semi-autonomous arbitration process via the ALM, SARA. A novel approach is introduced in the utilization of an AI arbitrator to critically evaluate biases and qualitative-in-nature nuances identified by the aforementioned AI applications (SAM in concert with SHIRLEY), based on the Hague Rules on Business and Human Rights Arbitration. This Semi-Automated Arbitration Process (SAAP) aims to uphold the integrity and fairness of legal judgments by ensuring a nuanced debate-resultant "understanding" through a hybrid system of AI and human-based collaborative analysis.
This article considers the increasing use of algorithmic decision-support systems and synthetic media in the newsroom, and explores how generative models can help reporters and editors across a range of tasks from the conception of a news story to its distribution. Specifically, we draw from a taxonomy of tasks associated with news production, and discuss where generative models could appropriately support reporters, the journalistic and ethical values that must be preserved within these interactions, and the resulting implications for design contributions in this area in the future. Our essay is relevant to practitioners and researchers as they consider using generative AI systems to support different tasks and workflows.
AI-based virtual assistants are increasingly used to support daily ideation tasks. The values or bias present in these agents can influence output in hidden ways. They may also affect how people perceive the ideas produced with these AI agents and lead to implications for the design of AI-based tools. We explored the effects of AI agents with different values on the ideation process and user perception of idea quality, ownership, agent competence, and values present in the output. Our study tasked 180 participants with brainstorming practical solutions to a set of problems with AI agents of different values. Results show no significant difference in self-evaluation of idea quality and perception of the agent based on value alignment; however, ideas generated reflected the AI's values and feeling of ownership is affected. This highlights an intricate interplay between AI values and human ideation, suggesting careful design considerations for future AI-supported brainstorming tools.
Context: Sustainable corporate behavior is increasingly valued by society and impacts corporate reputation and customer trust. Hence, companies regularly publish sustainability reports to shed light on their impact on environmental, social, and governance (ESG) factors. Problem: Sustainability reports are written by companies themselves and are therefore considered a company-controlled source. Contrary, studies reveal that non-corporate channels (e.g., media coverage) represent the main driver for ESG transparency. However, analysing media coverage regarding ESG factors is challenging since (1) the amount of published news articles grows daily, (2) media coverage data does not necessarily deal with an ESG-relevant topic, meaning that it must be carefully filtered, and (3) the majority of media coverage data is unstructured. Research Goal: We aim to extract ESG-relevant information from textual media reactions automatically to calculate an ESG score for a given company. Our goal is to reduce the cost of ESG data collection and make ESG information available to the general public. Contribution: Our contributions are three-fold: First, we publish a corpus of 432,411 news headlines annotated as being environmental-, governance-, social-related, or ESG-irrelevant. Second, we present our tool-supported approach called ESG-Miner capable of analyzing and evaluating headlines on corporate ESG-performance automatically. Third, we demonstrate the feasibility of our approach in an experiment and apply the ESG-Miner on 3000 manually labeled headlines. Our approach processes 96.7 % of the headlines correctly and shows a great performance in detecting environmental-related headlines along with their correct sentiment. We encourage fellow researchers and practitioners to use the ESG-Miner at //www.esg-miner.com.
The tremendous rise of generative AI has reached every part of society - including the news environment. There are many concerns about the individual and societal impact of the increasing use of generative AI, including issues such as disinformation and misinformation, discrimination, and the promotion of social tensions. However, research on anticipating the impact of generative AI is still in its infancy and mostly limited to the views of technology developers and/or researchers. In this paper, we aim to broaden the perspective and capture the expectations of three stakeholder groups (news consumers; technology developers; content creators) about the potential negative impacts of generative AI, as well as mitigation strategies to address these. Methodologically, we apply scenario writing and use participatory foresight in the context of a survey (n=119) to delve into cognitively diverse imaginations of the future. We qualitatively analyze the scenarios using thematic analysis to systematically map potential impacts of generative AI on the news environment, potential mitigation strategies, and the role of stakeholders in causing and mitigating these impacts. In addition, we measure respondents' opinions on a specific mitigation strategy, namely transparency obligations as suggested in Article 52 of the draft EU AI Act. We compare the results across different stakeholder groups and elaborate on the (non-) presence of different expected impacts across these groups. We conclude by discussing the usefulness of scenario-writing and participatory foresight as a toolbox for generative AI impact assessment.
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.