亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mesh-based simulations play a key role when modeling complex physical systems that, in many disciplines across science and engineering, require the solution of parametrized time-dependent nonlinear partial differential equations (PDEs). In this context, full order models (FOMs), such as those relying on the finite element method, can reach high levels of accuracy, however often yielding intensive simulations to run. For this reason, surrogate models are developed to replace computationally expensive solvers with more efficient ones, which can strike favorable trade-offs between accuracy and efficiency. This work explores the potential usage of graph neural networks (GNNs) for the simulation of time-dependent PDEs in the presence of geometrical variability. In particular, we propose a systematic strategy to build surrogate models based on a data-driven time-stepping scheme where a GNN architecture is used to efficiently evolve the system. With respect to the majority of surrogate models, the proposed approach stands out for its ability of tackling problems with parameter dependent spatial domains, while simultaneously generalizing to different geometries and mesh resolutions. We assess the effectiveness of the proposed approach through a series of numerical experiments, involving both two- and three-dimensional problems, showing that GNNs can provide a valid alternative to traditional surrogate models in terms of computational efficiency and generalization to new scenarios. We also assess, from a numerical standpoint, the importance of using GNNs, rather than classical dense deep neural networks, for the proposed framework.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 奇異的 · Integration · Microsoft Surface · 離散化 ·
2023 年 9 月 25 日

We present a method for computing nearly singular integrals that occur when single or double layer surface integrals, for harmonic potentials or Stokes flow, are evaluated at points nearby. Such values could be needed in solving an integral equation when one surface is close to another or to obtain values at grid points. We replace the singular kernel with a regularized version having a length parameter $\delta$ in order to control discretization error. Analysis near the singularity leads to an expression for the error due to regularization which has terms with unknown coefficients multiplying known quantities. By computing the integral with three choices of $\delta$ we can solve for an extrapolated value that has regularization error reduced to $O(\delta^5)$. In examples with $\delta/h$ constant and moderate resolution we observe total error about $O(h^5)$. For convergence as $h \to 0$ we can choose $\delta$ proportional to $h^q$ with $q < 1$ to ensure the discretization error is dominated by the regularization error. With $q = 4/5$ we find errors about $O(h^4)$. For harmonic potentials we extend the approach to a version with $O(\delta^7)$ regularization; it typically has smaller errors but the order of accuracy is less predictable.

A problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and gradient descent methods. In the presented research an artificial neural network of recurrent type has been used, whose architecture has been selected in an optimised way based on the above-mentioned algorithms. The optimality has been understood as achieving a trade-off between the size of the neural network and its accuracy in capturing the response of the mathematical model under which it has been learnt. During the optimisation, original specialised evolutionary operators have been proposed. The research involved an extended validation study based on data generated from a mathematical model of the fast processes occurring in a pressurised water nuclear reactor.

We address a classical problem in statistics: adding two-way interaction terms to a regression model. As the covariate dimension increases quadratically, we develop an estimator that adapts well to this increase, while providing accurate estimates and appropriate inference. Existing strategies overcome the dimensionality problem by only allowing interactions between relevant main effects. Building on this philosophy, we implement a softer link between the two types of effects using a local shrinkage model. We empirically show that borrowing strength between the amount of shrinkage for main effects and their interactions can strongly improve estimation of the regression coefficients. Moreover, we evaluate the potential of the model for inference, which is notoriously hard for selection strategies. Large-scale cohort data are used to provide realistic illustrations and evaluations. Comparisons with other methods are provided. The evaluation of variable importance is not trivial in regression models with many interaction terms. Therefore, we derive a new analytical formula for the Shapley value, which enables rapid assessment of individual-specific variable importance scores and their uncertainties. Finally, while not targeting for prediction, we do show that our models can be very competitive to a more advanced machine learner, like random forest, even for fairly large sample sizes. The implementation of our method in RStan is fairly straightforward, allowing for adjustments to specific needs.

A linear-time algorithm for generating auxiliary subgraphs for the 3-edge-connected components of a connected multigraph is presented. The algorithm uses an innovative graph contraction operation and makes only one pass over the graph. By contrast, the previously best-known algorithms make multiple passes over the graph to decompose it into its 2-edge-connected components or 2-vertex-connected components, then its 3-edge-connected components or 3-vertex-connected components, and then construct a cactus representation for the 2-cuts to generate the auxiliary subgraphs for the 3-edge-connected components.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

Prediction is a classic challenge in spatial statistics and the inclusion of spatial covariates can greatly improve predictive performance when incorporated into a model with latent spatial effects. It is desirable to develop flexible regression models that allow for nonlinearities and interactions in the covariate structure. Machine learning models have been suggested in the spatial context, allowing for spatial dependence in the residuals, but fail to provide reliable uncertainty estimates. In this paper, we investigate a novel combination of a Gaussian process spatial model and a Bayesian Additive Regression Tree (BART) model. The computational burden of the approach is reduced by combining Markov chain Monte Carlo (MCMC) with the Integrated Nested Laplace Approximation (INLA) technique. We study the performance of the method via simulations and use the model to predict anthropometric responses, collected via household cluster samples in Kenya.

Over the last two decades, the field of geometric curve evolutions has attracted significant attention from scientific computing. One of the most popular numerical methods for solving geometric flows is the so-called BGN scheme, which was proposed by Barrett, Garcke, and Nurnberg (J. Comput. Phys., 222 (2007), pp. 441{467), due to its favorable properties (e.g., its computational efficiency and the good mesh property). However, the BGN scheme is limited to first-order accuracy in time, and how to develop a higher-order numerical scheme is challenging. In this paper, we propose a fully discrete, temporal second-order parametric finite element method, which incorporates a mesh regularization technique when necessary, for solving geometric flows of curves. The scheme is constructed based on the BGN formulation and a semi-implicit Crank-Nicolson leap-frog time stepping discretization as well as a linear finite element approximation in space. More importantly, we point out that the shape metrics, such as manifold distance and Hausdorff distance, instead of function norms, should be employed to measure numerical errors. Extensive numerical experiments demonstrate that the proposed BGN-based scheme is second-order accurate in time in terms of shape metrics. Moreover, by employing the classical BGN scheme as a mesh regularization technique when necessary, our proposed second-order scheme exhibits good properties with respect to the mesh distribution.

Dye experimentation is a widely used method in experimental fluid mechanics for flow analysis or for the study of the transport of particles within a fluid. This technique is particularly useful in biomedical diagnostic applications ranging from hemodynamic analysis of cardiovascular systems to ocular circulation. However, simulating dyes governed by convection-diffusion partial differential equations (PDEs) can also be a useful post-processing analysis approach for computational fluid dynamics (CFD) applications. Such simulations can be used to identify the relative significance of different spatial subregions in particular time intervals of interest in an unsteady flow field. Additionally, dye evolution is closely related to non-discrete particle residence time (PRT) calculations that are governed by similar PDEs. This contribution introduces a pseudo-spectral method based on Fourier continuation (FC) for conducting dye simulations and non-discrete particle residence time calculations without numerical diffusion errors. Convergence and error analyses are performed with both manufactured and analytical solutions. The methodology is applied to three distinct physical/physiological cases: 1) flow over a two-dimensional (2D) cavity; 2) pulsatile flow in a simplified partially-grafted aortic dissection model; and 3) non-Newtonian blood flow in a Fontan graft. Although velocity data is provided in this work by numerical simulation, the proposed approach can also be applied to velocity data collected through experimental techniques such as from particle image velocimetry.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司